We define subsequence as any subset of an array. We define a subarray as a contiguous subsequence in an array.

Given an array, find the maximum possible sum among:

1. all nonempty subarrays.
2. all nonempty subsequences.

Print the two values as space-separated integers on one line.
Note that empty subarrays/subsequences should not be considered.

Example

$\operatorname{arr}=[-1,2,3,-4,5,10]$
The maximum subarray sum is comprised of elements at inidices $[1-5]$. Their sum is $2+3+-4+5+10=16$. The maximum subsequence sum is comprised of elements at indices [$1,2,4,5]$ and their sum is $2+3+5+10=20$.

Function Description

Complete the maxSubarray function in the editor below.
maxSubarray has the following parameter(s):

- int arr[n]: an array of integers

Returns

- int[2]: the maximum subarray and subsequence sums

Input Format

The first line of input contains a single integer t, the number of test cases.
The first line of each test case contains a single integer n.
The second line contains n space-separated integers $\operatorname{arr}[i]$ where $0 \leq i<n$.

Constraints

- $1 \leq t \leq 10$
- $1 \leq n \leq 10^{5}$
- $-10^{4} \leq \operatorname{arr}[i] \leq 10^{4}$

The subarray and subsequences you consider should have at least one element.

Sample Input 0

```
2
4
1 2 4
6
2 -1 2 3 4 -5
```


Sample Output 0

```
10 10
```

1011

Explanation 0

In the first case: The maximum sum for both types of subsequences is just the sum of all the elements since they are all positive.

In the second case: The subarray $[2,-1,2,3,4]$ is the subarray with the maximum sum, and $[2,2,3,4]$ is the subsequence with the maximum sum.

Sample Input 1

```
1
5
-2 -3 -1 -4 -6
```


Sample Output 1

```
-1 -1
```


Explanation 1

Since all of the numbers are negative, both the maximum subarray and maximum subsequence sums are made up of one element, -1 .

