Consider the following:

- A string, s, of length n where $s=c_{0} c_{1} \ldots c_{n-1}$.
- An integer, k, where k is a factor of n.

We can split s into $\frac{n}{k}$ substrings where each subtring, t_{i}, consists of a contiguous block of k characters in s. Then, use each t_{i} to create string u_{i} such that:

- The characters in u_{i} are a subsequence of the characters in t_{i}.
- Any repeat occurrence of a character is removed from the string such that each character in u_{i} occurs exactly once. In other words, if the character at some index j in t_{i} occurs at a previous index $<j$ in t_{i}, then do not include the character in string u_{i}.

Given s and k, print $\frac{n}{k}$ lines where each line i denotes string u_{i}.

Example

$s=$ 'AAABCADDE'
$k=3$
There are three substrings of length 3 to consider: 'AAA', 'BCA' and 'DDE'. The first substring is all 'A' characters, so $u_{1}=$ ' A '. The second substring has all distinct characters, so $u_{2}={ }^{\prime} \mathrm{BCA}$ '. The third substring has 2 different characters, so $u_{3}={ }^{\prime} \mathrm{DE}$ '. Note that a subsequence maintains the original order of characters encountered. The order of characters in each subsequence shown is important.

Function Description

Complete the merge_the_tools function in the editor below.
merge_the_tools has the following parameters:

- string s: the string to analyze
- int k : the size of substrings to analyze

Prints

Print each subsequence on a new line. There will be $\frac{n}{k}$ of them. No return value is expected.

Input Format

The first line contains a single string, s.
The second line contains an integer, k, the length of each substring.

Constraints

- $1 \leq n \leq 10^{4}$, where n is the length of s
- $1 \leq k \leq n$
- It is guaranteed that n is a multiple of k.

Sample Input

```
STDIN Function
*
AABCAAADA }s='AABCAAADA
3
k = 3
```


Sample Output

AB
CA
AD

Explanation

Split s into $\frac{n}{k}=\frac{9}{3}=3$ equal parts of length $k=3$. Convert each t_{i} to u_{i} by removing any subsequent occurrences of non-distinct characters in t_{i} :

1. $t_{0}=$ "AAB" $\rightarrow u_{0}=$ "AB"
2. $t_{1}=$ "CAA" $\rightarrow u_{1}=$ "CA"
3. $t_{2}=$ "ADA" $\rightarrow u_{2}=$ "AD"

Print each u_{i} on a new line.

