Minimum Average Waiting Time

Tieu owns a pizza restaurant and he manages it in his own way. While in a normal restaurant, a customer is served by following the first-come, first-served rule, Tieu simply minimizes the average waiting time of his customers. So he gets to decide who is served first, regardless of how sooner or later a person comes.

Different kinds of pizzas take different amounts of time to cook. Also, once he starts cooking a pizza, he cannot cook another pizza until the first pizza is completely cooked. Let's say we have three customers who come at time $\mathrm{t}=0, \mathrm{t}=1, \& \mathrm{t}=2$ respectively, and the time needed to cook their pizzas is $3,9, \& 6$ respectively. If Tieu applies first-come, first-served rule, then the waiting time of three customers is 3, $11, \& 16$ respectively. The average waiting time in this case is $(3+11+16) / 3=10$. This is not an optimized solution. After serving the first customer at time $t=3$, Tieu can choose to serve the third customer. In that case, the waiting time will be $3,7, \& 17$ respectively. Hence the average waiting time is $(3+7+17) / 3=9$.

Help Tieu achieve the minimum average waiting time. For the sake of simplicity, just find the integer part of the minimum average waiting time.

Input Format

- The first line contains an integer N , which is the number of customers.
- In the next N lines, the i th line contains two space separated numbers T_{i} and L_{i}. T_{i} is the time when ${ }^{\text {th }}$ customer order a pizza, and L_{i} is the time required to cook that pizza.
- The $i^{\text {th }}$ customer is not the customer arriving at the $i^{\text {th }}$ arrival time.

Output Format

- Display the integer part of the minimum average waiting time.

Constraints

- $1 \leq \mathrm{N} \leq 10^{5}$
- $0 \leq \mathrm{T}_{\mathrm{i}} \leq 10^{9}$
- $1 \leq \mathrm{L}_{\mathrm{i}} \leq 10^{9}$

Note

- The waiting time is calculated as the difference between the time a customer orders pizza (the time at which they enter the shop) and the time she is served.
- Cook does not know about the future orders.

Sample Input \#00

Sample Output \#00

9

Sample Input \#01

3
03
19
25

Sample Output \#01

8

Explanation \#01

Let's call the person ordering at time $=0$ as A, time $=1$ as B and time $=2$ as C. By delivering pizza for A, C and B we get the minimum average wait time to be

```
(3+6+16)/3=25/3=8.33
```

the integer part is 8 and hence the answer.

