Minimum MST Graph

Allison loves graph theory and just started learning about Minimum Spanning Trees(MST). She has three integers, n, m, and s, and uses them to construct a graph with the following properties:

- The graph has n nodes and m undirected edges where each edge has a positive integer length.
- No edge may directly connect a node to itself, and each pair of nodes can only be directly connected by at most one edge.
- The graph is connected, meaning each node is reachable from any other node.
- The value of the minimum spanning tree is s. Value of the MST is the sum of all the lengths of all edges of which are part of the tree.
- The sum of the lengths of all edges is as small as possible.

For example, let's say $n=4, m=5$ and $s=4$. We need to construct a graph with 4 nodes and 5 edges. The value of minimum spanning tree must be 4 . The diagram belows shows a way to construct such a graph while keeping the lengths of all edges is as small as possible:

Original Graph

Minimum Spanning Tree

Here the sum of lengths of all edges is 7 .
Given n, m, and s for g graphs satisfying the conditions above, find and print the minimum sum of the lengths of all the edges in each graph on a new line.

Note: It is guaranteed that, for all given combinations of n, m, and s, we can construct a valid graph.

Input Format

The first line contains an integer, g, denoting the number of graphs.
Each of the g subsequent lines contains three space-separated integers describing the respective values of n (the number of nodes in the graph), m (the number of edges in the graph), and s (the value of the MST graph).

Constraints

For 20% of the maximum score:

- $1 \leq g \leq 100$
- $2 \leq n \leq 10$
- $1 \leq m \leq 50$
- $1 \leq s \leq 20$
- $1 \leq g \leq 100$
- $2 \leq n \leq 50$
- $1 \leq m \leq 2000$
- $1 \leq s \leq 200$

For 70% of the maximum score:

- $1 \leq g \leq 100$
- $2 \leq n \leq 10^{5}$
- $1 \leq m \leq 10^{10}$
- $1 \leq s \leq 10^{6}$

For 100% of the maximum score:

- $1 \leq g \leq 1000$
- $2 \leq n \leq 10^{8}$
- $1 \leq m \leq 10^{16}$
- $1 \leq s \leq 10^{10}$

Output Format

For each graph, print an integer on a new line denoting the minimum sum of the lengths of all edges in a graph satisfying the given conditions.

Sample Input

```
2
4 54
436
```


Sample Output

Explanation

- Graph 1:

The answer for this sample is already explained the problem statement.

- Graph 2:

We must construct a graph with $n=4$ nodes, $m=3$ edges, and an MST value of $s=6$. Recall that a connected graph with n nodes and $n-1$ edges is already a tree, so the MST will contain all $m=3$ edges and the total length of all the edges of the graph will be equal to the value of the minimum spanning tree. So the answer is 6 .

