Calculi is Lambda's older brother. Lambda is mischievous and always annoys Calculi by asking silly questions. This time around, Lambda would like to surprise Calculi by asking a challenging and interesting question. To that end, Lambda gives Calculi an array of N integers, $A=\left\{a_{0}, a_{1}, \ldots, a_{N-1}\right\}$, followed by K queries. Each query is of two types:

- Q $l r$: Find the minimum positive integer, M, such that each element in subarray $\operatorname{arr}[l \ldots r]\left(\left\{a_{l}, a_{l+1}, \ldots, a_{r}\right\}\right)$ divides M.
- $U i d x$ val: Multiply the value at $i d x$ by val. That is $a_{i d x}^{\prime}=a_{i d x} \times v a l$, where $a_{i d x}^{\prime}$ is the updated value.

Your task is to help Calculi tackle this challenge. For each query of type " $Q l r^{\prime \prime}$, find the value of M. As this value can be very large, print the M modulo $\left(10^{9}+7\right)$, i.e., $M \%\left(10^{9}+7\right)$. For query of type " $U i d x v a l^{\prime}$, update the required element.

Input Format

The first line contains an integer, N, which represents the length of array, A.
In second line, there are N space-separated integers, $a_{0}, a_{1}, \ldots, a_{N-1}$, representing the elements of A.
In third line, there is another integer, K, which is the count of queries to follow.
Then follows K lines, each representing a query of one of the types described above.

Constraints

- $1 \leq N \leq 5 \times 10^{4}$
- $1 \leq a_{i} \leq 100$, where $i \in[0, N-1]$
- $1 \leq K \leq 5 \times 10^{4}$
- $0 \leq l \leq r<N$
- $0 \leq i d x<N$
- $1 \leq$ val ≤ 100

Output Format

For each query of type $Q \perp r$, print the value of $M \%\left(10^{9}+7\right)$ on a new line.

Sample Input

```
5
2 5 6 6 1 9
```


Sample Output

```
90
30
9
18
24
```


Explanation

Query 1 (Q 04): Calculi has to find M for (sub)array $A[0 \ldots 4]=\{2,5,6,1,9\}$ which is 90 .
Query 2 ($\begin{aligned} & 1 \\ & 1\end{aligned} 2$): $a_{1}^{\prime}=a_{1} \times 2=10$. Now updated array is $A=\{2,10,6,1,9\}$.
Query 3 ($Q 02$): M for subarray $A[0 \ldots 2]=\{2,10,6\}$ is 30 .
Query 4 (Q 3 4): M for subarray $A[3 \ldots 4]=\{1,9\}$ is 9 .
Query 5 (Q 24): M for subarray $A[2 \ldots 4]=\{6,1,9\}$ is 18 .
Query 6 (U 3 8): Updated array is $A=\{2,10,6,8,9\}$.
Query 7 (Q 2 3): M for subarray $A[2 \ldots 3]=\{6,8\}$ is 24 .

Tested by Wanbo

