You are given an unordered array consisting of consecutive integers $\in[1,2,3, \ldots, n]$ without any duplicates. You are allowed to swap any two elements. Find the minimum number of swaps required to sort the array in ascending order.

Example

$\operatorname{arr}=[7,1,3,2,4,5,6]$
Perform the following steps:

i	arr			
swap (indices)				
0	$[7,1,3,2,4,5,6]$	$\operatorname{swap}(0,3)$		
1	$[2,1,3,7,4,5,6]$	swap $(0,1)$		
2	$[1,2,3,7,4,5,6]$	$\operatorname{swap}(3,4)$		
3	$[1,2,3,4,7,5,6]$	$\operatorname{swap}(4,5)$		
4	$[1,2,3,4,5,7,6]$	$\operatorname{swap}(5,6)$		
5	$[1,2,3,4,5,6,7]$			

It took 5 swaps to sort the array.

Function Description

Complete the function minimumSwaps in the editor below.
minimumSwaps has the following parameter(s):

- int arr[n]: an unordered array of integers

Returns

- int: the minimum number of swaps to sort the array

Input Format

The first line contains an integer, n, the size of arr.
The second line contains n space-separated integers $\operatorname{arr}[i]$.

Constraints

- $1 \leq n \leq 10^{5}$
- $1 \leq \operatorname{arr}[i] \leq n$

Sample Input 0

```
4
4312
```


Sample Output 0

Explanation 0

Given array arr : [4, 3, 1, 2]
After swapping $(0,2)$ we get $\operatorname{arr}:[1,3,4,2]$
After swapping $(1,2)$ we get $\operatorname{arr}:[1,4,3,2]$
After swapping $(1,3)$ we get $\operatorname{arr}:[1,2,3,4]$
So, we need a minimum of 3 swaps to sort the array in ascending order.

Sample Input 1

```
2
```


Sample Output 1

3

Explanation 1

Given array arr : $[2,3,4,1,5]$
After swapping $(2,3)$ we get $\operatorname{arr}:[2,3,1,4,5]$
After swapping $(0,1)$ we get $\operatorname{arr}:[3,2,1,4,5]$
After swapping $(0,2)$ we get $\operatorname{arr}:[1,2,3,4,5]$
So, we need a minimum of 3 swaps to sort the array in ascending order.

Sample Input 2

```
7
1352467
```


Sample Output 2

3

Explanation 2

Given array arr : $[1,3,5,2,4,6,7]$
After swapping $(1,3)$ we get $\operatorname{arr}:[1,2,5,3,4,6,7]$
After swapping $(2,3)$ we get $\operatorname{arr}:[1,2,3,5,4,6,7]$
After swapping $(3,4)$ we get $\operatorname{arr}:[1,2,3,4,5,6,7]$
So, we need a minimum of 3 swaps to sort the array in ascending order.

