HackerRank

There are n gold mines along a river, and each mine i produces w_{i} tons of gold. In order to collect the mined gold, we want to redistribute and consolidate it amongst exactly k mines where it can be picked up by trucks. We do this according to the following rules:

- You can move gold between any pair of mines (i.e., i and j, where $1 \leq i<j \leq n$).
- All the gold at some pickup mine i must either stay at mine i or be completely moved to some other mine, j.
- Move w tons of gold between the mine at location x_{i} and the mine at location x_{j} at a cost of $\left|x_{i}-x_{j}\right| \times w$.

Given n, k, and the amount of gold produced at each mine, find and print the minimum cost of consolidating the gold into k pickup locations according to the above conditions.

Input Format

The first line contains two space-separated integers describing the respective values of n (the number of mines) and k (the number of pickup locations).
Each line i of the n subsequent lines contains two space-separated integers describing the respective values of x_{i} (the mine's distance from the mouth of the river) and w_{i} (the amount of gold produced in tons) for mine i.

Note: It is guaranteed that the mines are will be given in order of ascending location.

Constraints

- $1 \leq k<n \leq 5000$
- $1 \leq w_{i}, x_{i} \leq 10^{6}$

Output Format

Print a single line with the minimum cost of consolidating the mined gold amongst k different pickup sites according to the rules stated above.

Sample Input 0

```
31
201
301
401
```


Sample Output 0

Explanation 0

We need to consolidate the gold from $n=3$ mines into a single pickup location (because $k=1$). The mines are all equidistant and they all produce the same amount of gold, so we just move the gold from the mines at locations $x=20$ and $x=40$ to the mine at $x=30$ for a minimal cost of 20 .

Sample Input 1

```
3 1
113
12 2
131
```


Sample Input 1

```
4
```


Explanation 1

We need to consolidate the gold from $n=3$ mines into a single pickup location (because $k=1$). We can achieve a minimum cost of 4 by moving the gold from mines $x=12$ and $x=13$ to the mine at $x=11$.

Sample Input 2

```
6}
10 15
12 17
1618
18 13
30 10
321
```


Sample Output 2

```
    182
```


Explanation 2

We need to consolidate the gold from $n=6$ mines into $k=2$ pickup locations. We can minimize the cost of doing this by doing the following:

1. Move the gold from the mines at locations $x=10, x=16$, and $x=18$ to the mine at $x=12$.
2. Move the gold from the mine at location $x=32$ to the mine at $x=30$.
