Since you know how to compute large Fibonacci numbers quickly using matrix exponentiation, let's take things to the next level.

Let a, b, c, d, e, f, g and h be positive integers. We define two bi-infinite sequences

$$
\left(\ldots, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right)
$$

and

$$
\left(\ldots, y_{-2}, y_{-1}, y_{0}, y_{1}, y_{2}, \ldots\right)
$$

as follows:

$$
x_{n}= \begin{cases}x_{n-a}+y_{n-b}+y_{n-c}+n \cdot d^{n} & \text { if } n \geq 0 \\ 1 & \text { if } n<0\end{cases}
$$

and

$$
y_{n}= \begin{cases}y_{n-e}+x_{n-f}+x_{n-g}+n \cdot h^{n} & \text { if } n \geq 0 \\ 1 & \text { if } n<0\end{cases}
$$

Given n and the eight integers above, find x_{n} and y_{n}. Since these values can be very large, output them modulo 10^{9}.

This link may help you get started: http://fusharblog.com/solving-linear-recurrence-for-programmingcontest/

Input Format

The first line of input contains T, the number of test cases.
Each test case consists of a single line containing nine space separated integers: a, b, c, d, e, f, g, h and n, respectively.

Constraints

$1 \leq T \leq 100$
$1 \leq a, b, c, d, e, f, g, h<10$
$1 \leq n \leq 10^{18}$

Output Format

For each test case, output a single line containing two space separated integers, $x_{n} \bmod 10^{9}$ and $y_{n} \bmod 10^{9}$.

Sample Input

```
3
1 2 3 3 1 1 1 2 3 1 10
1}22\mp@code{3
1
```

```
    1910 1910
```

90932311461521
108676813414467031

Explanation

In the second test case, the following is a table of values x_{i} and y_{i} for $0 \leq i \leq 10$:

i	x_{i}	y_{i}
0	3	3
1	7	11
2	19	49
3	57	241
4	181	1187
5	631	5723
6	2443	27025
7	10249	125297
8	45045	571811
9	201975	2574683
10	909323	11461521

Remember that $x_{i}=y_{i}=1$ if $i<0$.
One can verify this table by using the definition above. For example:

$$
\begin{aligned}
x_{5} & =x_{5-1}+y_{5-2}+y_{5-3}+5 \cdot 2^{5} \\
& =x_{4}+y_{3}+y_{2}+160 \\
& =181+241+49+160 \\
& =631 \\
y_{5} & =y_{5-2}+x_{5-1}+x_{5-1}+5 \cdot 4^{5} \\
& =y_{3}+x_{4}+x_{4}+5120 \\
& =241+181+181+5120 \\
& =5723 \\
x_{2} & =x_{2-1}+y_{2-2}+y_{2-3}+2 \cdot 2^{2} \\
& =x_{1}+y_{0}+y_{-1}+8 \\
& =7+3+1+8 \\
& =19
\end{aligned}
$$

