Mutual Recurrences

HackerRank

Since you know how to compute large Fibonacci numbers quickly using *matrix exponentiation*, let's take things to the next level.

Let a, b, c, d, e, f, g and h be positive integers. We define two bi-infinite sequences

 $(\ldots, x_{-2}, x_{-1}, x_0, x_1, x_2, \ldots)$

and

$$(\ldots, y_{-2}, y_{-1}, y_0, y_1, y_2, \ldots)$$

as follows:

$$x_n = egin{cases} x_{n-a} + y_{n-b} + y_{n-c} + n \cdot d^n & ext{if } n \geq 0 \ 1 & ext{if } n < 0 \end{cases}$$

and

$$y_n = egin{cases} y_{n-e} + x_{n-f} + x_{n-g} + n \cdot h^n & ext{if } n \geq 0 \ 1 & ext{if } n < 0 \end{cases}$$

Given n and the eight integers above, find x_n and y_n . Since these values can be very large, output them modulo 10^9 .

This link may help you get started: http://fusharblog.com/solving-linear-recurrence-for-programming-contest/

Input Format

The first line of input contains T, the number of test cases.

Each test case consists of a single line containing nine space separated integers: a, b, c, d, e, f, g, h and n, respectively.

Constraints

 $egin{aligned} &1 \leq T \leq 100 \ &1 \leq a,b,c,d,e,f,g,h < 10 \ &1 \leq n \leq 10^{18} \end{aligned}$

Output Format

For each test case, output a single line containing two space separated integers, $x_n \mod 10^9$ and $y_n \mod 10^9$.

Sample Input

3 1 2 3 1 1 2 3 1 10 1 2 3 2 2 1 1 4 10 1 2 3 4 5 6 7 8 90

Sample Output

```
1910 1910
909323 11461521
108676813 414467031
```

Explanation

In the second test case, the following is a table of values x_i and y_i for $0 \leq i \leq 10$:

i	x_i	y_i
0	3	3
1	7	11
2	19	49
3	57	241
4	181	1187
5	631	5723
6	2443	27025
7	10249	125297
8	45045	571811
9	201975	2574683
10	909323	11461521

Remember that $x_i = y_i = 1$ if i < 0.

One can verify this table by using the definition above. For example:

$$egin{aligned} x_5 &= x_{5-1} + y_{5-2} + y_{5-3} + 5 \cdot 2^5 \ &= x_4 + y_3 + y_2 + 160 \ &= 181 + 241 + 49 + 160 \ &= 631 \ y_5 &= y_{5-2} + x_{5-1} + x_{5-1} + 5 \cdot 4^5 \ &= y_3 + x_4 + x_4 + 5120 \ &= 241 + 181 + 181 + 5120 \ &= 5723 \ x_2 &= x_{2-1} + y_{2-2} + y_{2-3} + 2 \cdot 2^2 \ &= x_1 + y_0 + y_{-1} + 8 \ &= 7 + 3 + 1 + 8 \ &= 19 \end{aligned}$$