Jim is doing his discrete maths homework which requires him to repeatedly calculate ${ }^{n} C_{r}(n$ choose $r)$ for different values of n. Knowing that this is time consuming, he goes to his sister June for help. June, being a computer science student knows how to convert this into a computer program and generate the answers quickly. She tells him, by storing the lower values of ${ }^{n} C_{r}(n$ choose $r)$, one can calculate the higher values using a very simple formula.

If you are June, how will you calculate ${ }^{n} C_{r}$ values for different values of n ?
Since ${ }^{n} C_{r}$ values will be large you have to calculate them modulo 10^{9}.

Input Format

The first line contains the number of test cases T.
T lines follow each containing an integer n.

Output Format

For each n output the list of ${ }^{n} C_{0}$ to ${ }^{n} C_{n}$ each separated by a single space in a new line. If the number is large, print only the last 9 digits. i.e. modulo 10^{9}

Constraints

$1<=$ T<=200
$1<=\mathrm{n}<1000$
Sample Input

```
3
2
4
5
```


Sample Output

```
1 2 1
1464 1
151010 5 1
```


Explanation

For 2 we can check ${ }^{2} C_{0}{ }^{2} C_{1}$ and ${ }^{2} C_{2}$ are 1,2 and 1 respectively. The other inputs' answer follow similar pattern.

