New Year Game

It's New Year's Day, and Balsa and Koca are stuck inside watching the rain. They decide to invent a game, the rules for which are described below.

Given array a containing n integers, they take turns making a single move. Balsa always moves first, and both players are moving optimally (playing to win and making no mistakes).

During each move, the current player chooses one element from a, adds it to their own score, and deletes the element from a; because the size of a decreases by 1 after each move, a 's size will be 0 after n moves and the game ends (as all elements were deleted from a). We refer to Balsa's score as S_{b} and Koca's score as S_{k}. Koca wins the game if $\left|S_{b}-S_{k}\right|$ is divisible by 3 ; otherwise Balsa wins.

Given a, determine the winner.
Note: $S_{b}+S_{k}=a_{0}+a_{1}+\ldots+a_{n-2}+a_{n-1}$.

Input Format

The first line contains an integer, T, denoting the number of test cases.
Each test case is comprised of two lines; the first line has an integer n, and the second line has n spaceseparated integers $a_{0}, a_{1}, \ldots, a_{n-2}, a_{n-1}$ describing array a.

Constraints

$1 \leq T \leq 100$
$1 \leq a_{i} \leq 2000$
$1 \leq n \leq 2000$

Subtasks

For 50% score: $1 \leq n \leq 200$
For 100% score: $1 \leq n \leq 2000$

Output Format

For each test case, print the winner's name on a single line; if Balsa wins print Balsa, otherwise print Koca.

Sample Input

```
2
3
6 18
```


Sample Output

Balsa

Explanation

Test Case 1

Array $a=\{7,6,18\}$. The possible play scenarios are:

1. $S_{b}=13, S_{k}=18,\left|S_{b}-S_{k}\right|=5$, and $5 \% 3 \neq 0$.
2. $S_{b}=24, S_{k}=7,\left|S_{b}-S_{k}\right|=17$, and $17 \% 3 \neq 0$.
3. $S_{b}=25, S_{k}=6,\left|S_{b}-S_{k}\right|=19$, and $19 \% 3 \neq 0$.

In this case, it doesn't matter what Balsa chooses because the difference between their scores isn't divisible by 3 . Thus, Balsa wins.

Test Case 2

Array $a=\{3\}$. Balsa must choose that element, the first move ends the game.
$S_{b}=3, S_{k}=0,\left|S_{b}-S_{k}\right|=3$, and $3 \% 3=0$. Thus, Koca wins.

