New Year Present

Nina received an odd New Year's present from a student: a set of n unbreakable sticks. Each stick has a length, l, and the length of the $i^{t h}$ stick is l_{i-1}. Deciding to turn the gift into a lesson, Nina asks her students the following:

How many ways can you build a square using exactly 6 of these unbreakable sticks?
Note: Two ways are distinct if they use at least one different stick. As there are $\binom{n}{6}$ choices of sticks, we must determine which combinations of sticks can build a square.

Input Format

The first line contains an integer, n, denoting the number of sticks. The second line contains n spaceseparated integers $l_{0}, l_{1}, \ldots, l_{n-2}, l_{n-1}$ describing the length of each stick in the set.

Constraints

- $6 \leq n \leq 3000$
- $1 \leq l_{i} \leq 10^{7}$

Output Format

On a single line, print an integer representing the number of ways that 6 unbreakable sticks can be used to make a square.

Sample Input 0

8
$\begin{array}{llllllll}4 & 5 & 1 & 5 & 1 & 9 & 4 & 5\end{array}$

Sample Output 0

3

Sample Input 1

```
6
```

123456

Sample Output 1

0

Explanation

Sample 0

Given 8 sticks ($l=4,5,1,5,1,9,4,5)$, the only possible side length for our square is 5 . We can build square S in 3 different ways:

1. $S=\left\{l_{0}, l_{1}, l_{2}, l_{3}, l_{4}, l_{6}\right\}=\{4,5,1,5,1,4\}$
2. $S=\left\{l_{0}, l_{1}, l_{2}, l_{4}, l_{6}, l_{7}\right\}=\{4,5,1,1,4,5\}$
3. $S=\left\{l_{0}, l_{2}, l_{3}, l_{4}, l_{6}, l_{7}\right\}=\{4,1,5,1,4,5\}$

In order to build a square with side length 5 using exactly 6 sticks, l_{0}, l_{2}, l_{4}, and l_{6} must always build two of the sides. For the remaining two sides, you must choose 2 of the remaining 3 sticks of length 5 (l_{1}, l_{3}, and l_{7}.

Sample 1

We have to use all 6 sticks, making the largest stick length (6) the minimum side length for our square. No combination of the remaining sticks can build 3 more sides of length 6 (total length of all other sticks is $1+2+3+4+5=15$ and we need at least length $3 * 6=18$), so we print 0 .

