Sam is playing with an array, A, of N positive integers. Sam writes a list, S, containing all A 's contiguous subarrays, and then replaces each subarray with its respective maximum element.

For example, consider the following A where $N=3$:
$A=\{1,2,3\}$
Subarrays of A : $S_{\text {initial }}=\{\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,2,3\}\}$
Updated (Maximum) Subarrays: $S_{\text {maximums }}=\{\{1\},\{2\},\{3\},\{2\},\{3\},\{3\}\}$
Help Sam determine how many numbers in $S_{\text {maximums }}$ are greater than K.

Input Format

The first line contains a single integer, T (the number of test cases). Each test case is described over two lines:
The first line of each test case contains two space-separated integers, N (the number of elements in array A) and K, respectively.
The second line of each test case contains N space-separated integers describing the elements in A.

Constraints

$1 \leq T \leq 10^{5}$
$1 \leq N \leq 2 \times 10^{5}$
$1 \leq A_{i} \leq 10^{9}$
$0 \leq K \leq 10^{9}$
The sum of N over all test cases does not exceed 10^{6}.

Output Format

For each test case, print the number of maximums $>K$ in $S_{\text {maximums }}$ on a new line.

Sample Input

```
2
3
2 3
3 1
123
```


Sample Output

Explanation

Both test cases use the same A as described in the Problem Statement, so $S_{\text {maximums }}=\{\{1\},\{2\},\{3\},\{2\},\{3\},\{3\}\}$ for both test cases.

Test Case $0: K=2$
$S_{\text {maximums }}$ has 3 elements >2, so we print 3 .
Test Case 1: $K=1$
$S_{\text {maximums }}$ has 5 elements >1, so we print 5 .

