Counter game

Louise and Richard have developed a numbers game. They pick a number and check to see if it is a power of $\mathbf{2}$. If it is, they divide it by $\mathbf{2}$. If not, they reduce it by the next lower number which is a power of $\mathbf{2}$. Whoever reduces the number to $\mathbf{1}$ wins the game. Louise always starts.

Given an initial value, determine who wins the game.

Example

n = 132

It's Louise's turn first. She determines that 132 is not a power of 2. The next lower power of 2 is 128, so she subtracts that from 132 and passes 4 to Richard. 4 is a power of 2, so Richard divides it by 2 and passes 2 to Louise. Likewise, 2 is a power so she divides it by 2 and reaches 1. She wins the game.

Update If they initially set counter to 1, Richard wins. Louise cannot make a move so she loses.

Function Description

Complete the counterGame function in the editor below.

counterGame has the following parameter(s):

• int n: the initial game counter value

Returns

• string: either Richard Or Louise

Input Format

The first line contains an integer $oldsymbol{t}$, the number of testcases.

Each of the next t lines contains an integer n, the initial value for each game.

Constraints

- $1 \le t \le 10$
- $1 \le n \le 2^{64} 1$

Sample Input

1

Sample Output

Richard

Explanation

- As 6 is not a power of 2, Louise reduces the largest power of 2 less than 6 i.e., 4, and hence the counter reduces to 2.
- As 2 is a power of 2, Richard reduces the counter by half of 2 i.e., 1. Hence the counter reduces to 1.

As we reach the terminating condition with N==1, Richard wins the game.