
1/2

Waiter

You are a waiter at a party. There is a pile of numbered plates. Create an empty array. At each

iteration, , remove each plate from the top of the stack in order. Determine if the number on the plate is

evenly divisible by the prime number. If it is, stack it in pile . Otherwise, stack it in stack . Store

the values in from top to bottom in . In the next iteration, do the same with the values in

stack . Once the required number of iterations is complete, store the remaining values in in

, again from top to bottom. Return the array.

Example

An abbreviated list of primes is . Stack the plates in reverse order.

Begin iterations. On the first iteration, check if items are divisible by .

Move elements to .

On the second iteration, test if elements are divisible by .

Move elmements to .

And on the third iteration, test if elements are divisible by .

Move elmements to .

All iterations are complete, so move the remaining elements in , from top to bottom, to .

. Return this list.

Function Description

Complete the waiter function in the editor below.

2/2

waiter has the following parameters:

int number[n]: the numbers on the plates

int q: the number of iterations

Returns

int[n]: the numbers on the plates after processing

Input Format

The first line contains two space separated integers, and .

The next line contains space separated integers representing the initial pile of plates, i.e., .

Constraints

Sample Input

5 1

3 4 7 6 5

Sample Output

4

6

3

7

5

Explanation

Initially:

 = [3, 4, 7, 6, 5]<-TOP

After 1 iteration:

 = []<-TOP

 = [6, 4]<-TOP

 = [5, 7, 3]<-TOP

We should output numbers in first from top to bottom, and then output numbers in from top to

bottom.

