Implement a simple text editor. The editor initially contains an empty string, S. Perform Q operations of the following 4 types:

1. append (W) - Append string W to the end of S.
2. delete (k) - Delete the last k characters of S.
3. $\operatorname{print}(k)$ - Print the $k^{t h}$ character of S.
4. undo() - Undo the last (not previously undone) operation of type 1 or 2 , reverting S to the state it was in prior to that operation.

Example

operation			
index	S	ops [index]	explanation
0	abcde	1 fg	append fg
1	abcdefg	36	print the 6th letter - f
2	abcdefg	25	delete the last 5 letters
3	ab	4	undo the last operation, index 2
4	abcdefg	37	print the 7th characgter - 9
5	abcdefg	4	undo the last operation, index 0
6	abcde	34	print the 4th character - d

The results should be printed as:

```
f
g
d
```


Input Format

The first line contains an integer, Q, denoting the number of operations.
Each line i of the Q subsequent lines (where $0 \leq i<Q$) defines an operation to be performed. Each operation starts with a single integer, t (where $t \in\{1,2,3,4\}$), denoting a type of operation as defined in the Problem Statement above. If the operation requires an argument, t is followed by its spaceseparated argument. For example, if $t=1$ and $W="$ abcd", line i will be 1 abcd.

Constraints

- $1 \leq Q \leq 10^{6}$
- $1 \leq k \leq|S|$
- The sum of the lengths of all W in the input $\leq 10^{6}$.
- The sum of k over all delete operations $\leq 2 \cdot 10^{6}$.
- All input characters are lowercase English letters.
- It is guaranteed that the sequence of operations given as input is possible to perform.

Output Format
Each operation of type 3 must print the $k^{\text {th }}$ character on a new line.

Sample Input

```
STDIN Function
---- --------
Q = 8
abc ops[0] = '1 abc'
3 ops[1] = '3 3'
3 ...
xy
2
4
3 1
```


Sample Output

Explanation

Initially, S is empty. The following sequence of 8 operations are described below:

1. $S=" "$. We append $a b c$ to S, so $S=" a b c "$.
2. Print the $3^{r d}$ character on a new line. Currently, the $3^{r d}$ character is c .
3. Delete the last 3 characters in $S(a b c)$, so $S="$.
4. Append $x y$ to S, so $S=" x y$ ".
5. Print the $2^{n d}$ character on a new line. Currently, the $2^{n d}$ character is y.
6. Undo the last update to S, making S empty again (i.e., $S=" "$).
7. Undo the next to last update to S (the deletion of the last 3 characters), making $S=$ "abc".
8. Print the $1^{\text {st }}$ character on a new line. Currently, the $1^{\text {st }}$ character is a.
