Tower Breakers

Two players are playing a game of Tower Breakers! Player 1 always moves first, and both players always play optimally. The rules of the game are as follows:

- Initially there are n towers.
- Each tower is of height m.
- The players move in alternating turns.
- In each turn, a player can choose a tower of height x and reduce its height to y, where $1 \leq y<x$ and y evenly divides x.
- If the current player is unable to make a move, they lose the game.

Given the values of n and m, determine which player will win. If the first player wins, return 1 . Otherwise, return 2.

Example. $n=2$
$m=6$
There are 2 towers, each 6 units tall. Player 1 has a choice of two moves:

- remove 3 pieces from a tower to leave 3 as 6 modulo $3=0$
- remove 5 pieces to leave 1

Let Player 1 remove 3 . Now the towers are 3 and 6 units tall.
Player 2 matches the move. Now the towers are both 3 units tall.
Now Player 1 has only one move.
Player 1 removes 2 pieces leaving 1. Towers are 1 and 2 units tall.
Player 2 matches again. Towers are both 1 unit tall.
Player 1 has no move and loses. Return 2.

Function Description

Complete the towerBreakers function in the editor below.
towerBreakers has the following paramter(s):

- int n : the number of towers
- int m : the height of each tower

Returns

- int: the winner of the game

Input Format

The first line contains a single integer t, the number of test cases.
Each of the next t lines describes a test case in the form of 2 space-separated integers, n and m.

Constraints

- $1 \leq t \leq 100$
- $1 \leq n, m \leq 10^{6}$

Sample Input

```
STDIN Function
----- --------
2 t = 2
2 2 n = 2, m = 2
14 n = 1, m = 4
```


Sample Output

```
2
```

1

Explanation

We'll refer to player 1 as $P 1$ and player 2 as $P 2$
In the first test case, $P 1$ chooses one of the two towers and reduces it to 1 . Then $P 2$ reduces the remaining tower to a height of 1 . As both towers now have height $1, P 1$ cannot make a move so $P 2$ is the winner.

In the second test case, there is only one tower of height $4 . P 1$ can reduce it to a height of either 1 or 2 . $P 1$ chooses 1 as both players always choose optimally. Because $P 2$ has no possible move, $P 1$ wins.

