
1/2

Tower Breakers

Two players are playing a game of Tower Breakers! Player always moves first, and both players always

play optimally.The rules of the game are as follows:

Initially there are towers.

Each tower is of height .

The players move in alternating turns.

In each turn, a player can choose a tower of height and reduce its height to , where

and evenly divides .

If the current player is unable to make a move, they lose the game.

Given the values of and , determine which player will win. If the first player wins, return .

Otherwise, return .

Example.

There are towers, each units tall. Player has a choice of two moves:

- remove pieces from a tower to leave as

- remove pieces to leave

Let Player remove . Now the towers are and units tall.

Player matches the move. Now the towers are both units tall.

Now Player has only one move.

Player removes pieces leaving . Towers are and units tall.

Player matches again. Towers are both unit tall.

Player has no move and loses. Return .

Function Description

Complete the towerBreakers function in the editor below.

towerBreakers has the following paramter(s):

int n: the number of towers

int m: the height of each tower

Returns

int: the winner of the game

Input Format

https://en.wiktionary.org/wiki/evenly_divisible

2/2

The first line contains a single integer , the number of test cases.

Each of the next lines describes a test case in the form of space-separated integers, and .

Constraints

Sample Input

STDIN Function

----- --------

2 t = 2

2 2 n = 2, m = 2

1 4 n = 1, m = 4

Sample Output

2

1

Explanation

We'll refer to player as and player as

In the first test case, chooses one of the two towers and reduces it to . Then reduces the

remaining tower to a height of . As both towers now have height , cannot make a move so is

the winner.

In the second test case, there is only one tower of height . can reduce it to a height of either or .

 chooses as both players always choose optimally. Because has no possible move, wins.

