Ones and Twos

You are using at most \mathbf{A} number of 1 s and at most \mathbf{B} number of 2 s . How many different evaluation results are possible when they are formed in an expression containing only addition + sign and multiplication * sign are allowed?

Note that, multiplication takes precedence over addition.
For example, if $\mathbf{A}=\mathbf{2}$ and $\mathbf{B}=\mathbf{2}$, then we have the following expressions:

- $1,1 * 1=1$
- $2,1 * 2,1 * 1 * 2,1+1=2$
- $1+2,1+1 * 2=3$
- $2+2,2 * 2,1+1+2,1 * 2 * 2,1 * 1 * 2 * 2,1 * 2+1 * 2,1 * 1 * 2+2,1 * 2+2=4$
- $1+2+2,1+1 * 2+2=5$
- $1+1+2+2,1+1+2 * 2=6$

So there are 6 unique results that can be formed if $A=2$ and $B=2$.

Input Format

The first line contains the number of test cases T, T testcases follow each in a newline. Each testcase contains 2 integers A and B separated by a single space.

Constraints

$1<=T<=10^{5}$
$0<=\mathrm{A}<=1000000000$
$0<=B<=1000$

Output Format

Print the number of different evaluations modulo (\%) (109+7.)

Sample Input

```
4
0
2
0
2 0
```


Sample Output

Explanation

- When $A=0, B=0$, there are no expressions, hence 0 .
- When $A=2, B=2$, as explained in the problem statement above, expressions leads to 6 possible solutions.
- When $A=0, B=2$, we have $2,2+2$ or $2 * 2$, hence 2 .
- When $A=2, B=0$, we have 1 or $1 * 1$, $1+1$ hence 2 .

