A border of a string is a proper prefix of it that is also a suffix. For example:

- a and abra are borders of abracadabra,
- kan and kankan are borders of kankankan.
- de is a border of decode.

Note that decode is not a border of decode because it's not proper.
A palindromic border is a border that is palindromic. For example,

- a and ana are palindromic borders of anabanana,
- 1, lol and lolol are palindromic borders of lololol.

Let's define $P(s)$ as the number of palindromic borders of string s. For example, if $s=$ lololol, then $P(s)=3$.

Now, a string of length N has exactly $N(N+1) / 2$ non-empty substrings (we count substrings as distinct if they are of different lengths or are in different positions, even if they are the same string). Given a string s, consisting only of the first 8 lowercase letters of the English alphabet, your task is to find the sum of $P\left(s^{\prime}\right)$ for all the non-empty substrings s^{\prime} of s. In other words, you need to find:

$$
\sum_{1 \leq i \leq j \leq N} P\left(s_{i \ldots j}\right)
$$

where $s_{i \ldots j}$ is the substring of s starting at position i and ending at position j.
Since the answer can be very large, output the answer modulo $10^{9}+7$.

Input Format

The first line contains a string consisting of N characters.

Output Format

Print a single integer: the remainder of the division of the resulting number by $10^{9}+7$.

Constraints

$1 \leq N \leq 10^{5}$
All characters in the string can be any of the first 8 lowercase letters of the English alphabet (abcdefgh).

Sample Input 1

```
ababa
```


Sample Output 1

Sample Input 2

aaaa

Sample Output 2

10

Sample Input 3

abcacb

Sample Output 3

3

Explanation

$s=$ ababa has 15 substrings but only 4 substrings have palindromic borders.
$s_{1 \ldots .}=\mathrm{aba} \longrightarrow P\left(s_{1 \ldots .}\right)=1$
$s_{1 \ldots .5}=$ ababa $\longrightarrow P\left(s_{1 \ldots .}\right)=2$
$s_{2 \ldots 4}=$ bab $\longrightarrow P\left(s_{2 \ldots 4}\right)=1$
$s_{3 \ldots .}=\mathrm{aba} \longrightarrow P\left(s_{3 \ldots .5}\right)=1$

