
1/3

Password Cracker

There are n users registered on a website CuteKittens.com. Each of them has a unique password

represented by pass[1], pass[2], ..., pass[N]. As this a very lovely site, many people want to access

those awesomely cute pics of the kittens. But the adamant admin does not want the site to be available

to the general public, so only those people who have passwords can access it.

Yu, being an awesome hacker finds a loophole in the password verification system. A string which is a

concatenation of one or more passwords, in any order, is also accepted by the password verification

system. Any password can appear or more times in that string. Given access to each of the

passwords, and also have a string , determine whether this string be accepted by the

password verification system of the website. If all of the string can be created by

concatenating password strings, it is accepted. In this case, return the passwords in the order they must

be concatenated, each separated by a single space on one line. If the password attempt will not be

accepted, return 'WRONG PWASSWORD'.

Examples

Concatenate the passwords in index order to match 'abrakadabra'. Return 'abra ka dabra'.

Concatenate the passwords in index order to match 'kaabra'. Return 'ka abra'.

Concatenate the passwords in index order to match 'abba', to match 'baab', to match 'abab'

or to match $baba'. No combination of 1 or more passwords can be concatenated to match 'aba'.

Return 'WRONG PASSWORD'.

Function Description

Complete the passwordCracker function in the editor below.

passwordCracker has the following parameters:

- string passwords[n]: a list of password strings

- string loginAttempt: the string to attempt to create

Returns

- string: Return the passwords as a single string in the order required for the password to be accepted,

each separated by a space. If it is not possible to form the string, return the string WRONG PASSWORD .

Input Format

The first line contains an integer t, the total number of test cases.

2/3

Each of the next sets of three lines is as follows:

- The first line of each test case contains n, the number of users with passwords.

- The second line contains n space-separated strings, passwords[i], that represent the passwords of each

user.

- The third line contains a string, loginAttempt, which Yu must test for acceptance.

Constraints

, where

loginAttempt and passwords[i] contain only lowercase latin characters ('a'-'z').

Sample Input 0

3

6

because can do must we what

wedowhatwemustbecausewecan

2

hello planet

helloworld

3

ab abcd cd

abcd

Sample Output 0

we do what we must because we can

WRONG PASSWORD

ab cd

Explanation 0

Sample Case #00: "wedowhatwemustbecausewecan" is the concatenation of passwords {"we" , "do" ,

"what" , "we" , "must" , "because" , "we" , "can"}. That is

loginAttempt = pass[5] + pass[3] + pass[6] + pass[5] + pass[4] + pass[1] + pass[5] + pass[2]

Note that any password can repeat any number of times.

Sample Case #01: We can't create string "helloworld" using the strings {"hello" , "planet"}.

Sample Case #02: There are two ways to create loginAttempt ("abcd"). Both pass[2] = "abcd" and

pass[1] + pass[3] = "ab cd" are valid answers.

Sample Input 1

3/3

3

4

ozkxyhkcst xvglh hpdnb zfzahm

zfzahm

4

gurwgrb maqz holpkhqx aowypvopu

gurwgrb

10

a aa aaa aaaa aaaaa aaaaaa aaaaaaa aaaaaaaa aaaaaaaaa aaaaaaaaaa

aaaaaaaaaab

Sample Output 1

zfzahm

gurwgrb

WRONG PASSWORD

