Sequence Equation

Given a sequence of n integers, $p(1), p(2), \ldots, p(n)$ where each element is distinct and satisfies $1 \leq p(x) \leq n$. For each x where $1 \leq x \leq n$, that is x increments from 1 to n, find any integer y such that $p(p(y)) \equiv x$ and keep a history of the values of y in a return array.

Example

$$p = [5, 2, 1, 3, 4]$$

Each value of \boldsymbol{x} between $\boldsymbol{1}$ and $\boldsymbol{5}$, the length of the sequence, is analyzed as follows:

1.
$$x = 1 \equiv p[3], p[4] = 3$$
, so $p[p[4]] = 1$

2.
$$x=2\equiv p[2], p[2]=2$$
, so $p[p[2]]=2$

3.
$$x = 3 \equiv p[4], p[5] = 4$$
, so $p[p[5]] = 3$

4.
$$x = 4 \equiv p[5], p[1] = 5$$
, so $p[p[1]] = 4$

5.
$$x=5\equiv p[1], p[3]=1$$
, so $p[p[3]]=5$

The values for y are [4,2,5,1,3].

Function Description

Complete the *permutationEquation* function in the editor below.

permutationEquation has the following parameter(s):

• int p[n]: an array of integers

Returns

• $\mathit{int[n]}$: the values of y for all x in the arithmetic sequence 1 to n

Input Format

The first line contains an integer n, the number of elements in the sequence. The second line contains n space-separated integers p[i] where $1 \le i \le n$.

Constraints

- $1 \le n \le 50$
- $1 \leq p[i] \leq 50$, where $1 \leq i \leq n$.
- Each element in the sequence is distinct.

Sample Input 0

```
3
2 3 1
```

Sample Output 0

```
2
3
1
```

Explanation 0

Given the values of p(1)=2, p(2)=3, and p(3)=1, we calculate and print the following values for each x from 1 to n:

```
1. x=1\equiv p(3)=p(p(2))=p(p(y)), so we print the value of y=2 on a new line.
```

2.
$$x=2\equiv p(1)=p(p(3))=p(p(y))$$
, so we print the value of $y=3$ on a new line.

3.
$$x=3\equiv p(2)=p(p(1))=p(p(y))$$
, so we print the value of $y=1$ on a new line.

Sample Input 1

```
5
4 3 5 1 2
```

Sample Output 1

```
1
3
5
4
2
```