Let N be a positive integer. Let's define a mapping f on the set of permutations of integers from 1 to N, inclusive. Let $x=(x[1], \ldots, x[N])$ be a permutation of integers from 1 to N, inclusive. We define the permutation $y=(y[1], \ldots, y[N])$ as follows.

- $y[1]=1$.
- For $i>1$ we consider number $z=x[y[i-1]]$.
- If z does not equal any of the numbers $y[1], \ldots, y[i-1]$ then we set $y[i]=z$.
- Otherwise $y[i]$ is defined as the smallest integer from 1 to N (inclusive) that does not equal any of the numbers $y[1], \ldots, y[i-1]$.

We consider permutation y as an image of x when mapping f is applied to x. That is, we set $f(x)=y$.
Denote by $g(y)$ the number of solutions of the equation $f(x)=y$. That is, $g(y)$ is the number of permutations x of integers from 1 to N, inclusive, such that $f(x)=y$.

Challenge

For the given non-negative integers L and R, find the number of permutations y of integers from 1 to N, inclusive, such that $L \leq g(y) \leq R$. Since this number can be quite large output it modulo $\left(10^{9}+7\right)$.

Input Format

The first line contains an integer T denoting the number of test cases. T test cases follow. Each test case consists of one line which contains three space-separated integers N, L and R.

Output Format

For each test case, output a single line containing $P \bmod \left(10^{9}+7\right)$, where P is the required number of permutations.

Constraints

$1 \leq \mathrm{T} \leq 1000$
$1 \leq N \leq 200,000$
$0 \leq \mathrm{L}, \mathrm{R} \leq 10^{18}$

Sample Input

```
4
2 0 0
322
3 0 10
1021
```


Sample Output

Explanation

Example case 1. The only permutation y for which equation $f(x)=y$ has no solutions is $y=(2,1)$.
Example case 2. The only permutation y for which equation $f(x)=y$ has 2 solutions is $y=(1,3,2)$. The solutions are $x=(3,2,1)$ and $x=(3,1,2)$.

Example case 3. For all 6 permutations y of numbers $\{1,2,3\}$ we have $0 \leq g(y) \leq 10$.
Example case 4. Be careful, L could be greater than R. In this case the answer is zero.

