Picking Cards

There are N cards on the table and each has a number between 0 and N . Let us denote the number on the $i^{\text {th }}$ card by c_{i}. You want to pick up all the cards. The $i^{\text {th }}$ card can be picked up only if at least c_{i} cards have been picked up before it. (As an example, if a card has a value of 3 on it, you can't pick that card up unless you've already picked up 3 cards previously) In how many ways can all the cards be picked up?

Input Format

The first line contains the number of test cases T . T test cases follow. Each case contains an integer N on the first line, followed by integers $c_{1}, . . c_{i}, \ldots, c_{N}$ on the second line.

Output Format

Output T lines one corresponding to each test case containing the required answer for the corresponding test case. As the answers can be very big, output them modulo 1000000007.

Constraints:

$1<=T<=10$
$1<=\mathrm{N}<=50000$
$0<=\mathrm{c}_{\mathrm{i}}<=\mathrm{N}$

Sample Input:

```
3
3
0
O 
3
0 3
```


Sample Output:

```
6
4
0
```


Sample Explanations:

For the first case, the cards can be picked in any order, so there are 3! = 6 ways.
For the second case, the cards can be picked in 4 ways: $\{1,2,3\},\{2,1,3\},\{1,3,2\},\{2,3,1\}$.
For the third case, no cards can be picked up after the first one, so there are 0 ways to pick up all cards.

