import java.util.*; import java.io.*; import java.math.*; public class Main { public static long mod= (long) (1e9 +7); static long sum=0; static long count=0; public static void main(String args[]) { InputReader s= new InputReader(System.in); OutputStream outputStream= System.out; PrintWriter out= new PrintWriter(outputStream); int n= s.nextInt(); int a[]= new int[n]; for(int i=0;imax) max=cnt[i]; } out.print(max+1); out.close(); } static long combinations(long n,long r){ // O(r) if(r==0 || r==n) return 1; r= Math.min(r, n-r); long ans=n; // nC1=n; for(int i=1;i 0){ if(b%2 == 1){ x=(x*y)%c; } y = (y*y)%c; // squaring the base b /= 2; } return x%c; } static void catalan_numbers(int n) { long catalan[]= new long[n+1]; catalan[1] = 1; for (int i = 2; i <= n; i++) { for (int j = 1; j <= i - 1; j++) { catalan[i] = catalan[i] + ((catalan[j]) * catalan[i - j]); } } } static ArrayList primeFactors(int n) // O(sqrt(n)) { // Print the number of 2s that divide n ArrayList arr= new ArrayList<>(); while (n%2 == 0) { arr.add(2); n = n/2; } // n must be odd at this point. So we can skip one element (Note i = i +2) for (int i = 3; i <= Math.sqrt(n); i = i+2) { // While i divides n, print i and divide n while (n%i == 0) { arr.add(i); n = n/i; } } // This condition is to handle the case when n is a prime number // greater than 2 if (n > 2) arr.add(n); return arr; } public static long expo(long a, long b){ if (b==0) return 1%mod; if (b==1) return a%mod; if (b==2) return ((a%mod)*(a%mod))%mod; if (b%2==0){ return expo(expo(a%mod,(b%mod)/2)%mod,2%mod)%mod; } else{ return (a%mod)*(expo(expo(a%mod,(b-1)%mod/2)%mod,2%mod)%mod)%mod; } } static class Pair implements Comparable { long f; String s; Pair(long ii, String cc) { f=ii; s=cc; } public int compareTo(Pair o) { return Long.compare(this.f, o.f); } } public static int[] sieve(int N){ // O(n*log(logn)) int arr[]= new int[N+1]; for(int i=2;i