Points on a Rectangle

You are given q queries where each query consists of a set of n points on a two-dimensional plane (i.e., (x,y)). For each set of points, print YES on a new line if all the points fall on the edges (i.e., sides and/or corners) of a non-degenerate rectangle which is axis parallel; otherwise, print NO instead.

Input Format

The first line contains a single positive integer, q, denoting the number of queries. The subsequent lines describe each query in the following format:

- 1. The first line contains a single positive integer, n, denoting the number of points in the query.
- 2. Each line i of the n subsequent lines contains two space-separated integers describing the respective values of x_i and y_i for the point at coordinate (x_i, y_i) .

Constraints

- $1 \le q \le 10$
- $1 \le n \le 10$
- $-10^4 \le x, y \le 10^4$

Output Format

For each query, print \underline{YES} on a new line if all n points lie on the edges of some non-degenerate rectangle which is axis parallel; otherwise, print \underline{NO} instead.

Sample Input

```
2
3
0
0
1
1
0
4
0
0
2
2
2
0
1
1
```

Sample Output

```
YES
NO
```

Explanation

We perform the following $oldsymbol{q}=\mathbf{2}$ queries:

- 1. In the first query, all points lie on the edges of a non-degenerate rectangle with corners at (0,0), (0,1), (1,0), and (1,1). Thus, we print YES on a new line.
- 2. In the second query, points (0,0), (0,2), and (2,0) could all lie along the edge of some non-degenerate rectangle, but point (1,1) would have to fall *inside* that rectangle. Thus, we print n on a new line.