Polar Coordinates

Polar coordinates are an alternative way of representing Cartesian coordinates or Complex Numbers.
A complex number z

- Capture.PNG

$$
z=x+y j
$$

is completely determined by its real part x and imaginary part y.
Here, j is the imaginary unit.
A polar coordinate (r, φ)

is completely determined by modulus r and phase angle φ.

If we convert complex number z to its polar coordinate, we find:
r : Distance from z to origin, i.e., $\sqrt{x^{2}+y^{2}}$
φ : Counter clockwise angle measured from the positive x-axis to the line segment that joins z to the origin.

Python's cmath module provides access to the mathematical functions for complex numbers.
cmath.phase
This tool returns the phase of complex number z (also known as the argument of z).

```
>>> phase(complex(-1.0, 0.0))
3.1415926535897931
```

abs
This tool returns the modulus (absolute value) of complex number z.

```
>>> abs(complex(-1.0, 0.0))
1.0
```


Task

You are given a complex z. Your task is to convert it to polar coordinates.

Input Format

A single line containing the complex number z. Note: complex() function can be used in python to convert the input as a complex number.

Constraints

Given number is a valid complex number

Output Format

Output two lines:
The first line should contain the value of r.
The second line should contain the value of φ.

Sample Input

$1+2 j$

Sample Output

```
2.23606797749979
1. 1071487177940904
```

Note: The output should be correct up to 3 decimal places.

