Polynomial Division

HackerRank

Consider a sequence, $c_0, c_1, \ldots c_{n-1}$, and a polynomial of degree 1 defined as $Q(x) = a \cdot x + b$. You must perform q queries on the sequence, where each query is one of the following two types:

- 1 i x: Replace c_i with x.
- 2 1 r: Consider the polynomial $P(x) = c_l \cdot x^0 + c_{l+1} \cdot x^1 + \dots + c_r \cdot x^{r-l}$ and determine whether P(x) is divisible by $Q(x) = a \cdot x + b$ over the field Z_p , where $p = 10^9 + 7$. In other words, check if there exists a polynomial R(x) with integer coefficients such that each coefficient of $P(x) R(x) \cdot Q(x)$ is divisible by p. If a valid R(x) exists, print Yes on a new line; otherwise, print No.

Given the values of n, a, b, and q queries, perform each query in order.

Input Format

The first line contains four space-separated integers describing the respective values of n (the length of the sequence), a (a coefficient in Q(x)), b (a coefficient in Q(x)), and q (the number of queries). The second line contains n space-separated integers describing $c_0, c_1, \ldots, c_{n-1}$. Each of the q subsequent lines contains three space-separated integers describing a query of either type

1 or type 2.

Constraints

- $1 \le n,q \le 10^5$
- For query type 1 : $0 \leq i \leq n-1$ and $0 \leq x < 10^9 + 7$.
- For query type $_2: 0 \leq l \leq r \leq n-1.$
- $0 \le a, b, c_i < 10^9 + 7$
- $a \neq 0$

Output Format

For each query of type 2, print Yes on a new line if Q(x) is a divisor of P(x); otherwise, print No instead.

Sample Input 0

2	2	3
2	3	
0	2	
2	1	
0	2	
	2 0 2	2 2 2 3 0 2 2 1 0 2

Sample Output 0

Explanation 0

Given $Q(x) = 2 \cdot x + 2$ and the initial sequence $c = \{1, 2, 3\}$, we perform the following q = 3 queries:

- 1. $Q(x) = 2 \cdot x + 2$ is not a divisor of $P(x) = 1 + 2 \cdot x + 3 \cdot x^2$, so we print No on a new line.
- 2. Set c_2 to 1, so $c=\{1,2,1\}.$
- 3. After the second query, $P(x) = 1 + 2 \cdot x + 1 \cdot x^2$. Because $(2 \cdot x + 2) \cdot (500000004 \cdot x + 50000004) \mod (10^9 + 7) = 1 + 2 \cdot x + 1 \cdot x^2 = P(x)$, we print Yes on a new line.