Polynomial Division

Consider a sequence, $c_{0}, c_{1}, \ldots c_{n-1}$, and a polynomial of degree 1 defined as $Q(x)=a \cdot x+b$. You must perform q queries on the sequence, where each query is one of the following two types:

- 1 i x: Replace c_{i} with x.
- 21 r: Consider the polynomial $P(x)=c_{l} \cdot x^{0}+c_{l+1} \cdot x^{1}+\cdots+c_{r} \cdot x^{r-l}$ and determine whether $P(x)$ is divisible by $Q(x)=a \cdot x+b$ over the field Z_{p}, where $p=10^{9}+7$. In other words, check if there exists a polynomial $R(x)$ with integer coefficients such that each coefficient of $P(x)-R(x) \cdot Q(x)$ is divisible by p. If a valid $R(x)$ exists, print Yes on a new line; otherwise, print No.

Given the values of n, a, b, and q queries, perform each query in order.

Input Format

The first line contains four space-separated integers describing the respective values of n (the length of the sequence), a (a coefficient in $Q(x)$), b (a coefficient in $Q(x)$), and q (the number of queries).
The second line contains n space-separated integers describing $c_{0}, c_{1}, \ldots c_{n-1}$.
Each of the q subsequent lines contains three space-separated integers describing a query of either type
1 or type 2.

Constraints

- $1 \leq n, q \leq 10^{5}$
- For query type $1: 0 \leq i \leq n-1$ and $0 \leq x<10^{9}+7$.
- For query type $2: 0 \leq l \leq r \leq n-1$.
- $0 \leq a, b, c_{i}<10^{9}+7$
- $a \neq 0$

Output Format

For each query of type 2, print Yes on a new line if $Q(x)$ is a divisor of $P(x)$; otherwise, print No instead.

Sample Input 0

```
322 3
123
2 0 2
1 2 1
2 0 2
```


Sample Output 0

Explanation 0

Given $Q(x)=2 \cdot x+2$ and the initial sequence $c=\{1,2,3\}$, we perform the following $q=3$ queries:

1. $Q(x)=2 \cdot x+2$ is not a divisor of $P(x)=1+2 \cdot x+3 \cdot x^{2}$, so we print $n \circ$ on a new line.
2. Set c_{2} to 1 , so $c=\{1,2,1\}$.
3. After the second query, $P(x)=1+2 \cdot x+1 \cdot x^{2}$. Because
$(2 \cdot x+2) \cdot(500000004 \cdot x+500000004) \bmod \left(10^{9}+7\right)=1+2 \cdot x+1 \cdot x^{2}=P(x)$, we print Yes on a new line.
