
1/3

Post Transition

We live in a big country. This country has towns in it. Each town has some post offices in

which packages are stored and transferred.

Post offices have different inner structure. Specifically, each of them has some limitations on the

packages it can store - their weight should be between and inclusively,

where and are fixed for each office.

Packages are stored in some order in the office queue. That means, that they are processed using this

order when sending and receiving.

Sometimes two post offices, even in different towns, may organize the following transaction: the first one

sends all its packages to the second one. The second one accepts the packages that satisfy the weight

condition for the second office and rejects all other ones. These rejected packages return to the first

office back and are stored in the same order they were stored before they were sent. The accepted

packages move to the tail of the second office's queue in the same order they were stored in the first

office.

You should process several queries in your program. You'll be provided with structures ,

 and . in order to complete this task, you should fill the following functions:

 - given the town , print all packages in this town. They should be printed as

follows:

Town_name:

 0:

 id_0

 id_1

 ...

 1:

 id_2

 id_3

 ...

 ...

where , etc are the numbers of post offices and , ... are the ids of packages from the th post

office in the order of its queue, , are from the st one etc. There should be one '\t' symbol before

post office numbers and two '\t' symbols before the ids.

 - given the towns and and post office indices

 and , manage the transaction described above between

the post office # in town and the post office # in

town .

 - given all towns, find the one with the most number of packages in all

post offices altogether. If there are several of them, find the first one from the collection .

 - given all towns and a string , find the town with the name . It's guaranteed

that the town exists.

2/3

Input Format

First line of the input contains a single integer . blocks follow, each

describing a town.

Every town block contains several lines. On the first line there is a string - the name of the

town. On the second line there is an integer - the number of the offices in the town.

 blocks follow then, each describing an office.

Every office block also contains several lines. On the first line there are three integers separated by single

spaces: (the number of packages in the office), and

(described above). blocks follow, each describing a package.

Every package block contains exactly two lines. On the first line there is a string which is an id of the

package. On the second line there is an integer which is the weight of the package.

Then, there is a single integer on the line which is the number of queries. blocks follow,

each describing a query.

Every query block contains several lines. On the first line there is an integer , or . If this integer is ,

on the second line there is a string - the name of town for which all packages should be

printed. If this integer is , on the second line there are string , integer

, string and integer separated by single

spaces. That means transactions between post office # in the town

 and post office # in the town should be processed.

If the integer is , no lines follow and the town with the most number of packages should be found.

Constraints

All integer are between and

, .

All strings have length

All towns' names have only uppercase english letters and are unique.

All packages' ids have only lowercase english letters and are unique.

For each post office, .

All queries are valid, that means, towns with the given names always exist, post offices with the

given indices always exist.

Output Format

For queries of type , print all packages in the format provided in the problem statement. For queries of

type , print "Town with the most number of packages is " on a separate line.

Sample Input 0

2

A

3/3

2

2 1 3

a 2

b 3

1 2 4

c 2

B

1

4 1 4

d 1

e 2

f 3

h 4

5

3

2 B 0 A 1

3

1 A

1 B

Sample Output 0

Town with the most number of packages is B

Town with the most number of packages is A

A:

 0:

 a

 b

 1:

 c

 e

 f

 h

B:

 0:

 d

Explanation 0

Before all queries, town B has packages in total, town has . But after transaction all packages from

B's th post office go to the st post office of A, except package d because it's too light.

