Prefix Compression

You are in charge of data transfer between two Data Centers. Each set of data is represented by a pair of strings. Over a period of time you have observed a trend: most of the times both strings share some prefix. You want to utilize this observation to design a data compression algorithm which will be used to reduce amount of data to be transferred.

You are given two strings, x and y, representing the data, you need to find the longest common prefix (p) of the two strings. Then you will send substring p, x^{\prime} and y^{\prime}, where x^{\prime} and y^{\prime} are the substring left after stripping p from them.

For example, if $x=$ "abcdefpr" and $y=$ "abcpqr", then $p=" a b c ", x^{\prime}=" d e f p r ", y^{\prime}=" p q r "$.

Input Format

The first line contains a single string denoting x.
The second line contains a single string denoting y.

Constraints

- x and y will contain only lowercase Latin characters ('a'-'z').
- $1 \leq \operatorname{length}(x)$, length $(y) \leq 10^{5}$

Output Format

In first line, print the length of substring p, followed by prefix p. In second line, print the length of substring x^{\prime}, followed by substring x^{\prime}. Similary in third line, print the length of substring y^{\prime}, followed by substring y^{\prime}.

Sample Input 0

abcdefpr

abcpqr

Sample Output 0

```
3 abc
5 defpr
3 pqr
```


Sample Input 1

```
kitkat
kit
```


Sample Output 1

Sample Input 2

puppy
puppy

Sample Output 2

```
puppy
```

0
0

Explanation

Sample Case 0:
Already explained above in the problem statement.
Sample Case 1:
$p=$ "kit", which is also y. So x^{\prime} will be "kat" and y^{\prime} will be an empty string.

Sample Case 2:

Because both strings are the same, the prefix will cover both the strings. Thus, x^{\prime} and y^{\prime} will be empty strings.

