Chloe is fascinated by prime numbers. She came across the number 283002 on a sign and, though the number is not prime, found some primes hiding in it by using the following rules:

- Every three consecutive digits sum to a prime:

- Every four consecutive digits sum to a prime:

- Every five consecutive digits sum to a prime:

$$
\underbrace{283002} \underbrace{83002}
$$

You must answer $q$ queries, where each query consists of an integer, $n$. For each $n$, find and print the number of positive $n$-digit numbers, modulo $10^{9}+7$, that satisfy all three of Chloe's rules (i.e., every three, four, and five consecutive digits sum to a prime).

## Input Format

The first line contains an integer, $q$, denoting the number of queries.
Each of the $q$ subsequent lines contains an integer denoting the value of $n$ for a query.

## Constraints

- $1 \leq q \leq 2 \times 10^{4}$
- $1 \leq n \leq 4 \times 10^{5}$


## Output Format

For each query, print the number of $n$-digit numbers satisfying Chloe's rules, modulo $10^{9}+7$, on a new line.

## Sample Input 0

## Sample Output 0

95

## Explanation 0

There are 95 six-digit numbers satisfying the property above, where the respective first and last ones are 101101 and 902005.

