We define a primitive root of prime number $p$ to be some integer $g \in[1, p-1]$ satisfying the property that all values of $g^{x} \bmod p$ where $x \in[0, p-2]$ are different.

For example: if $p=7$, we want to look at all values of $g$ in the inclusive range from 1 to $p-1=6$. For $g=3$, the powers of $g^{x} \bmod p$ (where $x$ is in the inclusive range from 0 to $p-2=5$ ) are as follows:

- $3^{0}=1(\bmod 7)$
- $3^{1}=3(\bmod 7)$
- $3^{2}=2(\bmod 7)$
- $3^{3}=6(\bmod 7)$
- $3^{4}=4(\bmod 7)$
- $3^{5}=5(\bmod 7)$

Note that each of these evaluates to one of the six distinct integers in the range $[1, p-1]$.
Given prime $p$, find and print the following values as two space-separated integers on a new line:

1. The smallest primitive root of prime $p$.
2. The total number of primitive roots of prime $p$.

Need Help? Check out a breakdown of this process at Math Stack Exchange.

## Input Format

A single prime integer denoting $p$.

## Constraints

- $2<p<10^{9}$


## Output Format

Print two space-separated integers on a new line, where the first value is the smallest primitive root of $p$ and the second value is the total number of primitive roots of $p$.

Sample Input 0

## Sample Output 0

## Explanation 0

The primitive roots of $p=7$ are 3 and 5 , and no other numbers in $[1,6]$ satisfy our definition of a primitive root. We then print the smallest primitive root (3) followed by the total number of primitive roots (2).

