HackerRank

Given a graph which consists of several edges connecting its nodes, find a subgraph of the given graph with the following properties:

- The subgraph contains all the nodes present in the original graph.
- The subgraph is of minimum overall weight (sum of all edges) among all such subgraphs.
- It is also required that there is exactly one, exclusive path between any two nodes of the subgraph.

One specific node S is fixed as the starting point of finding the subgraph using Prim's Algorithm. Find the total weight or the sum of all edges in the subgraph.

Example

$n=3$
edges $=[[1,2,2],[2,3,2],[1,3,3]]$
start $=1$

Starting from node 1 , select the lower weight edge, i.e. $1 \leftrightarrow 2$, weight 2 .
Choose between the remaining edges, $1 \leftrightarrow 3$, weight 3 , and $2 \leftrightarrow 3$, weight 2 .
The lower weight edge is $2 \leftrightarrow 3$ weight 2 .
All nodes are connected at a cost of $2+2=4$. The edge $1 \leftrightarrow 3$ is not included in the subgraph.

Function Description

Complete the prims function in the editor below.
prims has the following parameter(s):

- int n : the number of nodes in the graph
- int edges[m][3]: each element contains three integers, two nodes numbers that are connected and the weight of that edge
- int start: the number of the starting node

Returns

- int: the minimum weight to connect all nodes in the graph

Input Format

The first line has two space-separated integers n and m, the number of nodes and edges in the graph.
Each of the next m lines contains three space-separated integers u, v and w, the end nodes of edges $[i]$, and the edge's weight.
The last line has an integer start, the starting node.

Constraints

$2 \leq n \leq 3000$
$1 \leq m \leq(n *(n-1)) / 2$
$1 \leq u, v$, start $\leq n$
$0 \leq w \leq 10^{5}$
There may be multiple edges between two nodes.
Sample Input 0

```
5 6
2 3
134
4 2 6
5 2 2
2 3 5
3 7
1
```


Sample Output 0

```
1 5
```


Explanation 0

The graph given in the test case is shown as :

- The starting node is 1 (in the given test case)

Applying the Prim's algorithm, edge choices available at first are :
$1 \rightarrow 2$ (WT. 3) and $1 \rightarrow 3$ (WT. 4), out of which $1 \rightarrow 2$ is chosen (smaller weight of edge).
Now the available choices are :
$1 \rightarrow 3(\mathbf{W T} .4), 2 \rightarrow 3(\mathbf{W T} . \mathbf{5}), 2 \rightarrow 5(\mathbf{W} \mathbf{T} . \mathbf{2})$ and $2 \rightarrow 4$ (WT. 6), out of which $2 \rightarrow 5$ is chosen by the algorithm.

Following the same method of the algorithm, the next chosen edges, sequentially are : $1 \rightarrow 3$ and $2 \rightarrow 4$.

Hence the overall sequence of edges picked up by Prim's are:
$1 \rightarrow 2: 2 \rightarrow 5: 1 \rightarrow 3: 2 \rightarrow 4$
and the total weight of the MST (minimum spanning tree) is : $3+2+4+6=15$

