Two strings A and B, consisting of small English alphabet letters are called pseudo-isomorphic if

- Their lengths are equal
- For every pair (i, j), where $1<=\mathrm{i}<\mathrm{j}<=|A|, B[i]=B[j]$, iff $A[i]=A[j]$
- For every pair (i, j), where $1<=\mathrm{i}<\mathrm{j}<=|\mathrm{A}|, \mathrm{B}[\mathrm{i}]$! $=\mathrm{B}[\mathrm{j}]$ iff $\mathrm{A}[\mathrm{i}]$!= $A[j]$

Naturally, we use 1-indexation in these definitions and $|A|$ denotes the length of the string \mathbf{A}.
You are given a string S, consisting of no more than 10^{5} Iowercase alphabetical characters. For every prefix of \mathbf{S} denoted by \mathbf{S}^{\prime}, you are expected to find the size of the largest possible set of strings, such that all elements of the set are substrings of S^{\prime} and no two strings inside the set are pseudo-isomorphic to each other.
if $S=$ abcde
then, $1^{\text {st }}$ prefix of S is 'a'
then, $2^{\text {nd }}$ prefix of S is ' $a b$ '
then, $3^{\text {rd }}$ prefix of S is 'abc'
then, $4^{\text {th }}$ prefix of S is 'abcd' and so on..

Input Format

The first and only line of input will consist of a single string S. The length of S will not exceed $10^{\wedge} 5$.

Constraints

- $1 \leq|S| \leq 10^{5}$
- S contains only lower-case english alphabets ('a' - 'z').

Output Format

Output N lines. On the $\mathrm{i}^{\text {th }}$ line, output the size of the largest possible set for the first i alphabetical characters of S such that no two strings in the set are pseudo-isomorphic to each other.

Sample Input

```
abbabab
```


Sample Output

Explanation

The first character is 'a', the set is $\{a\}$ hence 1 .
The first 2 characters are ' $a b$ ', the set is $\{a, b, a b\}$ but 'a' is pseudo-isomorphic to 'b'. So, we can remove either 'a' or 'b' from the set. We get $\{a, a b\}$ or $\{b, a b\}$, hence 2 .
Similarly, the first 3 characters are ' $a b b$ ', the set is $\{a, a b, a b b, b, b b\}$ and $a s$ ' a ' is pseudo-isomorphic to 'b', we have to remove either 'a' or 'b' from the set. We get $\{a, a b, a b b, b b\}$, hence 4 . and so on...

