## Puzzle and PC

Mom has to go to work and she doesn't want little Johnny to get bored. So she gives him a simple puzzle to solve. She also tells him that he can play a PC game only if he solves this problem. Johnny loves PC games and wants to solve this puzzle quickly. So he asks you for help.

You are given a square $N x N$ board divided into single cells, where $N$ is always a power of 2 . You are also given an infinite number of L-shaped trominoes:


Note that each tromino can covers three cells.

The board has one special cell $S$ on which you are not allowed to place any tromino. Your task is to cover the whole board with trominoes in such a way that any two trominoes don't overlap, and every cell (except cell $S$ ) is covered by some tromino.

Indexing starts from 1 , and top-left cell is indexed (1, 1 ).

## Input

In the first line, there is an integer $M . N=2^{M}$ denotes the size of the board.
In the second line, there are two integers, $r$ c, denoting the row and the column of cell $S$.

## Output

For every tromino placed, print one line containing 6 space separated numbers, denoting the coordinates (in row major form) of 3 cells covered by this block.

## Constraints

- $1 \leq M \leq 9$
- $1 \leq r, c \leq 2^{M}$


## Note

- You are also allowed to rotate the trominoes.
- There may be multiple solution for a case. All valid solutions will be considered correct.


## Sample Input \#00

```
1
2
```


## Sample Output \#00

## Sample Input \#01

```
2
```

11

## Sample Output \#01

```
2 3 3 2 3 3
1 2 2 1 2 2
1
3
3 4 4 3 4 4
```


## Explanation \#00

Sample Case \#00: Since you are not allowed to cover bottom-right cell, you will cover points $(1,1),(1,2)$ \& $(2,1)$ with a single tromino.

|  |  | 1 | 2 |  |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 |
| 2 |  |  |  |  |
| 2 | 1 | 1 | $\mid$ | $x$ |$|$

Sample Case \#01: Since $N=2^{2}=4$, board is of size $4 x 4$ and you are not allowed cover top-left cell. You will need 5 trominoes to cover whole board, except cell $(1,1)$.

1. 23323 3: This tromino will cover points (2, 3), (3, 2), (3, 3).
2. 12212 2: This tromino will cover points (1, 2), (2, 1), (2, 2).
3. $1 \begin{array}{lllll}3 & 4 & 4 \text { : This tromino will cover points }(1,3),(1,4),(2,4) \text {. }\end{array}$
4. 314142 : This tromino will cover points $(3,1),(4,1),(4,2)$.
5. 34434 : This tromino will cover ponits $(3,4),(4,3),(4,4)$.


Note that there can be multiple configurations to this input, and all will be considered correct

Tested by Wanbo

