Check Strict Superset

You are given a set A and n other sets.
Your job is to find whether set A is a strict superset of each of the N sets.
Print True, if A is a strict superset of each of the N sets. Otherwise, print False.
A strict superset has at least one element that does not exist in its subset.

Example

$\operatorname{Set}([1,3,4])$ is a strict superset of $\operatorname{set}([1,3])$.
$\operatorname{Set}([1,3,4])$ is not a strict superset of $\operatorname{set}([1,3,4])$.
$\operatorname{Set}([1,3,4])$ is not a strict superset of $\operatorname{set}([1,3,5])$.

Input Format

The first line contains the space separated elements of set A.
The second line contains integer n, the number of other sets.
The next n lines contains the space separated elements of the other sets.

Constraints

- $0<\operatorname{len}(\operatorname{set}(A))<501$
- $0<N<21$
- $0<\operatorname{len}($ otherSets $)<101$

Output Format

Print True if set A is a strict superset of all other N sets. Otherwise, print False.

Sample Input 0

```
1 2 3 3 4 5 6 7 7 8 9 10 11 12 23 45 84 78
2
1}22344
100 11 12
```


Sample Output 0

False

Explanation 0

Set A is the strict superset of the set $([1,2,3,4,5])$ but not of the $\operatorname{set}([100,11,12])$ because 100 is not in set A.
Hence, the output is False.

