Pythagorean Triple

A Pythagorean triple consists of three positive integers a, b, and c, such that $a^{2}+b^{2}=c^{2}$. Such a triple is commonly written as (a, b, c). This term comes from the Pythagorean theorem, which says that a Pythagorean Triple will be the lengths of the sides of a right-angled triangle.

You have been given an integer a which represents the length of one cathetus of a right-angle triangle.

You need to find the lengths of the remaining sides. There may be multiple possible answers; any one will be accepted.

Hints:

- Every odd number $2 k+1$ can be represented as $(k+1)^{2}-k^{2}$.
- If m and n are integers and $m>n$, then $\left(m^{2}-n^{2}\right)^{2}+(2 m n)^{2}=\left(m^{2}+n^{2}\right)^{2}$.

Input Format

The first line contains an integer a denoting the length of one of cathetus of the right-angled triangle.

Constraints

- $5 \leq a<10^{9}$

Output Format

A single line containing the possible values of a, b and c. You may print them in any order.

Sample Input 0

Sample Output 0

```
5 12 13
```

We can see that the triple $(5,12,13)$ is a pythagorean triple:

$$
5^{2}+12^{2}=13^{2}
$$

