Quadrant Queries

There are n points on a plane. Each point $p[i]$ is described by $[x[i], y[i]]$, where $1 \leq i \leq n$. There are three types of queries needed:

1. X i j Reflect all points in the inclusive range between points $p[i]$ and $p[j]$ along the x-axis.
2. Y i j Reflect all points in the inclusive range between points $p[i]$ and $p[j]$ along the y-axis.
3. C i j Count the number of points in the inclusive range between points $p[i]$ and $p[j]$ in each of the 4 quadrants. Then print a single line of four space-separated integers describing the respective numbers of points in the first, second, third, and fourth quadrants in that order.

As a reminder, the four quadrants of a graph are labeled as follows:

Given a set of n points and q queries, perform each query in order. For example, given points
 are in quadrants 1 and 3 . The first query says to reflect points with indices from 1 to 2 along the x-axis. After the query, $p=[(1,-1),(-1,1)]$ and quadrants are 4 and 2 . The next query prints the number of points in each quadrant: 0101 . The third query says to reflect the point with index 1 to 1 along the y axis, so now $p=[(-1,-1),(-1,1)]$. The points now lie in quadrants 3 and 2 , so the fourth query output is 0110 .

Note: Points may sometimes share the same coordinates.

Function Description

Complete the quadrants function in the editor below. It should print the results of each c type query on a new line.
quadrants has the following parameters:

- $p[p[1] \ldots p[n]]:$ a 2-dimensional array of integers where each element $p[i]$ contains two integers $x[i]$ and $y[i]$
- queries[queries[1]...queries[n]: an array of strings

Input Format

The first line contains a single integer, n, that denotes the number of points.
Each line i of the n subsequent lines contains two space-separated integers that describe the respective
$x[i]$ and $y[i]$ values for point $p[i]$.
The next line contains a single integer, q, that denotes the number of queries.
Each of the q subsequent lines contains three space-separated values that describe a query in one of the three forms defined above.

Constraints

- $1 \leq n \leq 10^{5}$
- $1 \leq q \leq 10^{6}$
- No point lies on the x or y axes.
- $1 \leq x[i], y[i] \leq 2^{31}-1$
- In all queries, $1 \leq i \leq j \leq n$.

Output Format

For each query of type ci j, print four space-separated integers that describe the number of points having indices in the inclusive range between i and j in the first, second, third, and fourth graph quadrants in that order.

Sample Input

\square

Sample Output

```
1}11%1
1 1 0 0
0 2 0 1
```


Explanation

Initially, $p=[[1,1],[-1,1],[-1,-1],[1,-1]]$ so there is one point in each of the four quadrants. The first query results in printing 1111 .

The second query, $\times 24$, reflects the points in the inclusive range between indices 2 and 4 along the x axis. Now $p=[[1,1],[-1,-1],[-1,1],[1,1]]$.

The query C 34 requires that the number of points considering $p[3]$ through $p[4]$ be printed: 1100

The third query, Y 12 requires reflection of $p[1]-p[2]$ along the y-axis. Now $p=[[-1,1],[1,-1],[-1,1],[1,1]]$.

The last query, Clllll 3 requires that the number of points considering $p[1]$ through $p[3]$ be printed: 02 01

