Queries with Fixed Length

Consider an n-integer sequence, $A=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$. We perform a query on A by using an integer, d, to calculate the result of the following expression:

$\min \left(\max a_{j}\right)$
 $0 \leq i \leq n-d \quad i \leq j<i+d$

In other words, if we let $m_{i}=\max \left(a_{i}, a_{i+1}, a_{i+2}, \ldots, a_{i+d-1}\right)$, then you need to calculate $\min \left(m_{0}, m_{1}, \ldots, m_{n-d}\right)$.

Given arr and q queries, return a list of answers to each query.

Example

$\operatorname{arr}=[2,3,4,5,6]$
queries $=[2,3]$
The first query uses all of the subarrays of length 2 : $[2,3],[3,4],[4,5],[5,6]$. The maxima of the subarrays are $[3,4,5,6]$. The minimum of these is 3 .

The second query uses all of the subarrays of length $3:[2,3,4],[3,4,5],[4,5,6]$. The maxima of the subarrays are $[4,5,6]$. The minimum of these is 4 .

Return $[3,4]$.

Function Description

Complete the solve function below.
solve has the following parameter(s):

- int arr[n]: an array of integers
- int queries[q]: the lengths of subarrays to query

Returns

- int[q]: the answers to each query

Input Format

The first line consists of two space-separated integers, n and q.
The second line consists of n space-separated integers, the elements of arr.
Each of the q subsequent lines contains a single integer denoting the value of d for that query.

Constraints

- $1 \leq n \leq 10^{5}$
- $0 \leq \operatorname{arr}[i]<10^{6}$
- $1 \leq q \leq 100$
- $1 \leq d \leq n$

Sample Input 0

```
5 5
33}111444114
1
2
3
4
5
```


Sample Output 0

```
11
33
4 4
4 4
55
```


Explanation 0

For $d=1$, the answer is

$$
\min \left(\max \left(a_{0}\right), \max \left(a_{1}\right), \max \left(a_{2}\right), \max \left(a_{3}\right), \max \left(a_{4}\right)\right)=11
$$

For $d=2$, the answer is

$$
\min \left(\max \left(a_{0}, a_{1}\right), \max \left(a_{1}, a_{2}\right), \max \left(a_{2}, a_{3}\right), \max \left(a_{3}, a_{4}\right)\right)=33
$$

For $d=3$, the answer is

$$
\min \left(\max \left(a_{0}, a_{1}, a_{2}\right), \max \left(a_{1}, a_{2}, a_{3}\right), \max \left(a_{2}, a_{3}, a_{4}\right)\right)=44
$$

For $d=4$, the answer is

$$
\min \left(\max \left(a_{0}, a_{1}, a_{2}, a_{3}\right), \max \left(a_{1}, a_{2}, a_{3}, a_{4}\right)\right)=44
$$

For $d=5$, the answer is

$$
\min \left(\max \left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)\right)=55
$$

Sample Input 1

Sample Output 1

2
3
4
5

Explanation 1

For each query, the "prefix" has the least maximum value among the consecutive subsequences of the same size.

