Real Estate Broker

HackerRank

You are a real estate broker in ancient Knossos. You have m unsold houses, and each house j has an area, x_j , and a minimum price, y_j . You also have n clients, and each client i wants a house with an area greater than a_i and a price less than or equal to p_i .

Each client can buy *at most* one house, and each house can have *at most* one owner. What is the maximum number of houses you can sell?

Input Format

The first line contains two space-separated integers describing the respective values of n (the number of clients) and m (the number of houses).

Each line i of the n subsequent lines contains two space-separated integers describing the respective values of a_i and p_i for client i.

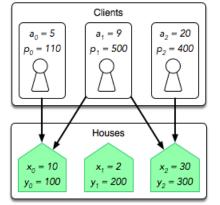
Each line j of the m subsequent lines contains two space-separated integers describing the respective values of x_j and y_j for house j.

Constraints

- $1 \le n,m \le 1000$
- $1 \leq a_i, p_i \leq 10^9$, where $0 \leq i < n$.
- $1 \leq x_j, y_j \leq 10^9$, where $0 \leq j < m$.

Output Format

Print a single integer denoting the maximum number of houses you can sell.


Sample Input 0

Sample Output 0

2

Explanation 0

Recall that each client i is only interested in some house j where $x_j > a_i$ and $y_j \le p_i$. The diagram below depicts which clients will be interested in which houses:

- Client 0 will be interested in house 0 because it has more than $a_0 = 5$ units of space and costs less than $p_0 = 110$. Both of the other houses are outside of this client's price range.
- Client 1 will be interested in houses 0 and 2, as both these houses have more than $a_1 = 9$ units of space and cost less than $p_1 = 500$. They will not be interested in the remaining house because it's too small.
- Client 2 will be interested in house 2 because it has more than $a_2 = 20$ units of space and costs less than $p_2 = 400$. They will not be interested in the other two houses because they are too small.

All three clients are interested in the same two houses, so you can sell *at most* two houses in the following scenarios:

- Client ${\bf 0}$ buys house ${\bf 0}$ and client ${\bf 1}$ buys house ${\bf 2}.$
- Client ${\bf 1}$ buys house ${\bf 0}$ and client ${\bf 2}$ buys house ${\bf 2}.$
- Client 0 buys house 0 and client 2 buys house 2.

Thus, we print the maximum number of houses you can sell, 2, on a new line.