Rectangular Game

You are given an infinite 2-d grid with the bottom left cell referenced as (1,1). All the cells contain a value of zero initially. Let's play a game?

The game consists of \mathbf{N} steps wherein each step you are given two integers \mathbf{a} and \mathbf{b}. The value of each of the cells in the co-ordinate (u, v) satisfying $1 \leq u \leq a$ and $1 \leq v \leq b$, is increased by 1 . After \mathbf{N} such steps, if \mathbf{X} is the largest number amongst all the cells in the rectangular board, can you print the number of \mathbf{X} 's in the board?

Input Format

The first line of input contains a single integer N . N lines follow.
Each line contains two integers a and b separated by a single space.

Output Format

Output a single integer - the number of X's.

Constraints

$1 \leq N \leq 100$
$1 \leq \mathrm{a} \leq 10^{6}$
$1 \leq \mathrm{b} \leq 10^{6}$

Sample Input

```
3
2 3
3
4
```


Sample Output

2

Explanation

Assume that the following board corresponds to cells (i, j) where $1 \leq \mathrm{i} \leq 4$ and $1 \leq \mathrm{j} \leq 7$.
At the beginning board is in the following state:

```
0}00000000
0
0
0}00000000
```

After the first step we will obtain:

```
0 0 0 0 0 0 0
0}0000000
```

After the second step we will obtain:

```
0}00000000
1
2
2 2 2 1 1 1 1
```

Finally, after the last step we will obtain:

```
1 0}0000000
2
3
```


So, the maximum number is 3 and there are exactly two cells which correspond to 3 . Hence 2.

