Martha is interviewing at Subway. One of the rounds of the interview requires her to cut a bread of size $l \times b$ into smaller identical pieces such that each piece is a square having maximum possible side length with no left over piece of bread.

Input Format

The first line contains an integer $T . T$ lines follow. Each line contains two space separated integers l and b which denote length and breadth of the bread.

Constraints

- $1 \leq T \leq 1000$
- $1 \leq l, b \leq 1000$

Output Format

T lines, each containing an integer that denotes the number of squares of maximum size, when the bread is cut as per the given condition.

Sample Input 0

```
2
2
6}
```


Sample Output 0

```
    1
```

 6

Explanation 0

The $1^{\text {st }}$ testcase has a bread whose original dimensions are 2×2, the bread is uncut and is a square. Hence the answer is 1.
The $2^{\text {nd }}$ testcase has a bread of size 6×9. We can cut it into 54 squares of size 1×1, 6 of size 3×3. For other sizes we will have leftovers. Hence, the number of squares of maximum size that can be cut is 6.

