Restaurant

Martha is interviewing at Subway. One of the rounds of the interview requires her to cut a bread of size $l \times b$ into smaller identical pieces such that each piece is a square having maximum possible side length with no left over piece of bread.

Input Format

The first line contains an integer T. T lines follow. Each line contains two space separated integers \boldsymbol{l} and \boldsymbol{b} which denote length and breadth of the bread.

Constraints

- $1 \le T \le 1000$
- $1 \le l, b \le 1000$

Output Format

 $oldsymbol{T}$ lines, each containing an integer that denotes the number of squares of maximum size, when the bread is cut as per the given condition.

Sample Input 0

Sample Output 0

```
1
6
```

Explanation 0

The 1^{st} testcase has a bread whose original dimensions are 2×2 , the bread is uncut and is a square. Hence the answer is 1.

The 2nd testcase has a bread of size 6×9 . We can cut it into 54 squares of size 1×1 , 6 of size 3×3 . For other sizes we will have leftovers. Hence, the number of squares of maximum size that can be cut is 6.