Reverse Shuffle Merge

Given a string, A, we define some operations on the string as follows:
a. reverse (A) denotes the string obtained by reversing string A. Example:
reverse("abc") = "cba"
b. shuffle (A) denotes any string that's a permutation of string A. Example: shuffle("god") \in ['god', 'gdo', 'ogd', 'odg', 'dgo', 'dog']
c. $\operatorname{merge}(A 1, A 2)$ denotes any string that's obtained by interspersing the two strings $A 1 \& A 2$, maintaining the order of characters in both. For example, A1 = "abc" \& A2 = "def", one possible result of $\operatorname{merge}(A 1, A 2)$ could be "abcdef", another could be "abdecf", another could be "adbecf" and so on.

Given a string s such that $s \in$ merge (reverse(A), shuffle(A)) for some string A, find the lexicographically smallest A.

For example, $s=a b a b$. We can split it into two strings of $a b$. The reverse is $b a$ and we need to find a string to shuffle in to get $a b a b$. The middle two characters match our reverse string, leaving the a and b at the ends. Our shuffle string needs to be $a b$. Lexicographically $a b<b a$, so our answer is $a b$.

Function Description

Complete the reverseShuffleMerge function in the editor below. It must return the lexicographically smallest string fitting the criteria.
reverseShuffleMerge has the following parameter(s):

- s: a string

Input Format

A single line containing the string s.

Constraints

- s contains only lower-case English letters, ascii[a-z]
- $1 \leq|s| \leq 10000$

Output Format

Find and return the string which is the lexicographically smallest valid A.

Sample Input 0

Sample Output 0

```
egg
```


Explanation 0

Split "eggegg" into strings of like character counts: "egg", "egg"
reverse("egg") = "gge"
shuffle("egg") can be "egg"
"eggegg" belongs to the merge of ("gge", "egg")
The merge is: eggegg.
'egg' < 'gge'
Sample Input 1
abcdefgabcdefg

Sample Output 1

```
agfedcb
```


Explanation 1

Split the string into two strings with like characters: $a b c d e f g$ and $a b c d e f g$.
Reverse $a b c d e f g=g f e d c b a$
Shuffle $g f e d c b a$ can be $b c d e f g a$
Merge to $a \mathbf{b c d e f g a b c d e f g}$

Sample Input 2

```
aeiouuoiea
```


Sample Output 2

```
aeiou
```


Explanation 2

Split the string into groups of like characters: aeiou
Reverse aeiou = uoiea
These merge to aeiouuoiea

