Road Maintenance

Byteland has N cities (numbered from 1 to N) and $N-1$ bidirectional roads. A path is comprised of 1 or more connected roads. It is guaranteed that there is a path from any city to any other city.

Steven is a road maintenance worker in Byteland. He is required to maintain exactly M paths on any given workday. He cannot work on the same road twice in one day (so no 2 paths can contain the same 2 roads). Steven can start his workday in any city and, once he has finished maintaining a path, teleport to his next starting city.

Given M, help Steven determine how many different possible M-path sets will allow him to perform his maintenance duties. Then print the answer modulo $10^{9}+7$.

Input Format

The first line contains 2 space-separated integers, N (the number of cities) and M (the number of roads to maintain).
Each line i of the $N-1$ subsequent lines contains 2 space-separated integers, $A_{i} B_{i}$, describing a bidirectional road between cities A_{i} and B_{i}.

Constraints

- $1 \leq N \leq 10^{5}$
- $1 \leq M \leq 5$
- $A_{i} \neq B_{i}$
- $1 \leq A_{i}, B_{i} \leq N$

Output Format

Find the number of different M-path sets that will allow Steven to complete M orders, and print the answer $\%\left(10^{9}+7\right)$.

Sample Input

```
2
2
2 3
24
```


Sample Output

6

Explanation

For the following Byteland map:

Steven can maintain $M=2$ roads using any of the following 6 routes:

1. $[1,2]$ and $[2,3]$
2. $[1,2]$ and $[2,4]$
3. $[1,2]$ and $[3,4]$
4. $[1,3]$ and $[2,4]$
5. $[1,4]$ and $[2,3]$
6. $[2,3]$ and $[2,4]$

Thus, we print the result of $6 \%\left(10^{9}+7\right)$ on a new line, which is 6 .

