You have two arrays of integers, $V=\left\{V_{1}, V_{2}, \ldots, V_{N}\right\}$ and $P=\left\{P_{1}, P_{2}, \ldots, P_{N}\right\}$, where both have N number of elements. Consider the following function:

```
score = 0
int Go(step, energy) {
    if (step == N) {
        score += V[step];
        return (score);
    }
    else {
        int way = random(1, 2);
        if (way == 1) {
                score += V[step];
        }
        else
            energy = P[step];
        }
        if (energy > 0) {
                Go(step + 1, energy - 1);
        }
        else {
            KillTheWorld();
        }
    }
}
```

What is the maximum possible value of score that we can get in the end, if we call $G o(1,0)$?.
Note that the function should never invoke KillTheWorld function. And random $(1,2)$ generates a random integer from set [1, 2].
It is guaranteed there will be a solution that wont kill the world.

Input Format

The first line contains an integer N . Each of the following N lines contains a pair of integers. The i-th line contains a pair of numbers, V_{i}, P_{i}, separated by space.

Constraints

$1 \leq N \leq 5 \times 10^{5}$
$0 \leq V_{i} \leq 10^{9}$
$0 \leq P_{i} \leq 10^{5}$

Output Format

Derive the maximum score given by return (score); .

Sample Input

Sample Output

7

Explanation

In the best case, the first and second function call in Go variable way will take value 2 , while in the other calls it will be equal to 1 then the final score will be equal to the value of 7 .

