Blocks HackerRankH

Higher order functions are one of the key components of functional programming.
A higher order function is a tool that takes other functions as parameters or returns them as a result.

Blocks are nameless methods that can be passed to another method as a parameter.
Passing a block to a method is a great way of data abstraction.

Blocks can either be defined with a keyword do ... end orcurly braces { ... }.
Example:

a). Passing a block to a method that takes no parameter

CODE

def call block
puts "Start of method."
yield
puts "End of method."
end
call block do
puts "I am inside call block method."
end

OUTPUT

Start of method.
I am inside call block method.
End of method.

In this example, a block is passed to the call_block method.
To invoke this block inside the method, we used a keyword, vield.
Calling yield will execute the code within the block that is provided to the method.

b). Passing a block to a method that takes one or more parameters.

CODE

def calculate (a,b)
yield(a, b)
end

puts calculate (15, 10) {la, bl a - b}

OUTPUT

1/2

http://rubylearning.com/satishtalim/ruby_blocks.html

In this example, we have defined a method calculate that takes two parameters a and b.
The yield statement invokes the block with parameters a and b, and executes it.

Task
You are given a partially complete code. Your task is to fill in the blanks ().
The factorial method computes: n! {mxn—1x....2x173}.

2/2

