
1/2

Blocks

Higher order functions are one of the key components of functional programming.

A higher order function is a tool that takes other functions as parameters or returns them as a result.

Blocks are nameless methods that can be passed to another method as a parameter.

Passing a block to a method is a great way of data abstraction.

Blocks can either be defined with a keyword do ... end or curly braces { ... } .

Example:

def call_block

 puts "Start of method."

 yield

 puts "End of method."

end

call_block do

 puts "I am inside call_block method."

end

Start of method.

I am inside call_block method.

End of method.

In this example, a block is passed to the call_block method.

To invoke this block inside the method, we used a keyword, yield .

Calling yield will execute the code within the block that is provided to the method.

def calculate(a,b)

 yield(a, b)

end

puts calculate(15, 10) {|a, b| a - b}

5

a). Passing a block to a method that takes no parameter

CODE

OUTPUT

b). Passing a block to a method that takes one or more parameters.

CODE

OUTPUT

http://rubylearning.com/satishtalim/ruby_blocks.html

2/2

In this example, we have defined a method calculate that takes two parameters and .

The yield statement invokes the block with parameters and , and executes it.

Task

You are given a partially complete code. Your task is to fill in the blanks (_______).

The factorial method computes: n! { x x x }.

