
1/2

Lazy Evaluation

Lazy evaluation is an evaluation strategy that delays the assessment of an expression until its value is

needed.

Ruby introduced a lazy enumeration feature. Lazy evaluation increases performance by avoiding

needless calculations, and it has the ability to create potentially infinite data structures.

Example:

power_array = -> (power, array_size) do

 1.upto(Float::INFINITY).lazy.map { |x| x**power }.first(array_size)

end

puts power_array.(2 , 4) #[1, 4, 9, 16]

puts power_array.(2 , 10) #[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

puts power_array.(3, 5) #[1, 8, 27, 64, 125]

In this example, lazy avoids needless calculations to compute power_array.

If we remove lazy from the above code, then our code would try to compute all ranging from to

Float::INFINITY.

To avoid timeouts and memory allocation exceptions, we use lazy . Now, our code will only compute up

to first(array_size).

Task

Your task is to print an array of the first palindromic prime numbers.

For example, the first palindromic prime numbers are .

Input Format

A single line of input containing the integer .

Constraints

You are not given how big is.

Output Format

Print an array of the first palindromic primes.

Sample Input

5

Sample Output

[2, 3, 5, 7, 11]

https://en.wikipedia.org/wiki/Lazy_evaluation

2/2

