Russian Peasant Exponentiation

We all know how to calculate a^{b} using b operations by multiplying 1 by a a total of b times. The drawback to this method is that b can be large, which makes exponentiation very slow.

There is a well known method called Russian Peasant Multiplication that you can read about here. Now let's use this to raise some complex numbers to powers!

You're given q queries where each query consists of four integers: a, b, k, and m. For each query, calculate $(a+b \cdot i)^{k}=c+d \cdot i$ (where i is an imaginary unit) and then print the respective values of $c \bmod m$ and $d \bmod m$ as two space-separated integers on a new line.

Input Format

The first line contains a single integer, q, denoting the number of queries.
Each of the q subsequent lines describes a query in the form of four space-separated integers: a, b, k, and m (respectively).

Constraints

- $1 \leq q \leq 10^{5}$
- $0 \leq k \leq 10^{18}$
- $2 \leq m \leq 10^{9}$
- $0 \leq a, b \leq m$

Output Format

For each query, print the two space-separated integers denoting the respective values of c mod m and $d \bmod m$ on a new line.

Sample Input

```
3
2 0 9 1000
0}1151
8 2 101000000000
```


Sample Output

```
5120
0 1
880332800 927506432
```


Explanation

In the first query, we have $a=2, b=0, k=9, m=1000$. We calculate the following:

1. $2^{9}=512$
2. $i^{5}=i$
