Day 9: Multiple Linear Regression

Objective

In this challenge, we practice using multiple linear regression. Check out the Tutorial tab for learning materials!

Task

Andrea has a simple equation:

$$
Y=a+b_{1} \cdot f_{1}+b_{1} \cdot f_{2}+\ldots+b_{m} \cdot f_{m}
$$

for $(m+1)$ real constants $\left(a, f_{1}, f_{2}, \ldots, f_{m}\right)$. We can say that the value of Y depends on m features. Andrea studies this equation for n different feature sets $\left(f_{1}, f_{2}, f_{3}, \ldots, f_{m}\right)$ and records each respective value of Y. If she has q new feature sets, can you help Andrea find the value of Y for each of the sets?

Note: You are not expected to account for bias and variance trade-offs.

Input Format

The first line contains 2 space-separated integers, m (the number of observed features) and n (the number of feature sets Andrea studied), respectively.
Each of the n subsequent lines contain $m+1$ space-separated decimals; the first m elements are features $\left(f_{1}, f_{2}, f_{3}, \ldots, f_{m}\right)$, and the last element is the value of Y for the line's feature set.
The next line contains a single integer, q, denoting the number of feature sets Andrea wants to query for. Each of the q subsequent lines contains m space-separated decimals describing the feature sets.

Constraints

- $1 \leq m \leq 10$
- $5 \leq n \leq 100$
- $0 \leq x_{i} \leq 1$
- $0 \leq Y \leq 10^{6}$
- $1 \leq q \leq 100$

Scoring

For each feature set in one test case, we will compute the following:

- $d_{i}^{\prime}=\frac{\mid \text { Computed value of } \mathrm{Y}-\text { Expected value of } \mathrm{Y} \mid}{\text { Expected value of } \mathrm{Y}}$
- $d_{i}=\max \left(d_{i}^{\prime}-0.1,0\right)$. We will permit up to a $\pm 10 \%$ margin of error.
- $s_{i}=\max \left(1.0-d_{i}, 0\right)$

The normalized score for each test case will be: $S=\frac{\sum_{i=1}^{q} s_{i}}{q}$. If the challenge is worth C points, then your score will be $S \times C$.

Output Format

For each of the q feature sets, print the value of Y on a new line (i.e., you must print a total of q lines).

Sample Input

```
2 7
0.18 0.89 109.85
1.0 0.26 155.72
0.92 0.11 137.66
0.07 0.37 76.17
0.85 0.16 139.75
0.99 0.41 162.6
0.87 0.47 151.77
4
0.49 0.18
0.57 0.83
0.56 0.64
0.76 0.18
```


Sample Output

```
105.22
142.68
132.94
129.71
```


Explanation

We're given $m=2$, so $Y=a+b_{1} \cdot f_{1}+b_{2} \cdot f_{2}$. We're also given $n=7$, so we determine that Andrea studied the following feature sets:

- $a+0.18 \cdot b_{1}+0.89 \cdot b_{2}=109.85$
- $a+1.0 \cdot b_{1}+0.26 \cdot b_{2}=155.72$
- $a+0.92 \cdot b_{1}+0.11 \cdot b_{2}=137.66$
- $a+0.07 \cdot b_{1}+0.37 \cdot b_{2}=76.17$
- $a+0.85 \cdot b_{1}+0.16 \cdot b_{2}=139.75$
- $a+0.99 \cdot b_{1}+0.41 \cdot b_{2}=162.6$
- $a+0.87 \cdot b_{1}+0.47 \cdot b_{2}=151.77$

We use the information above to find the values of a, b_{1}, and b_{2}. Then, we find the value of Y for each of the q feature sets.

