HackerRank |

Day 7: Pearson Correlation Coefficient I

Objective

In this challenge, we practice calculating the *Pearson correlation coefficient*. Check out the Tutorial tab for learning materials!

Task

Given two n-element data sets, X and Y, calculate the value of the Pearson correlation coefficient.

Input Format

The first line contains an integer, n, denoting the size of data sets X and Y.

The second line contains n space-separated real numbers (scaled to at most one decimal place), defining data set X.

The third line contains n space-separated real numbers (scaled to at most one decimal place), defining data set Y.

Constraints

- $10 \le n \le 100$
- $1 \leq x_i \leq 500$, where x_i is the i^{th} value of data set X.
- $1 \leq y_i \leq 500$, where y_i is the i^{th} value of data set Y.
- $\bullet \ \ \mathsf{Data} \ \mathsf{set} \ X \ \mathsf{contains} \ \mathsf{unique} \ \mathsf{values}.$
- ullet Data set Y contains unique values.

Output Format

Print the value of the Pearson correlation coefficient, rounded to a scale of $oldsymbol{3}$ decimal places.

Sample Input

```
10
10 9.8 8 7.8 7.7 7 6 5 4 2
200 44 32 24 22 17 15 12 8 4
```

Sample Output

```
0.612
```

Explanation

The mean and standard deviation of data set \boldsymbol{X} are:

•
$$\mu_X = 6.73$$

•
$$\sigma_X = 2.39251$$

The mean and standard deviation of data set $oldsymbol{Y}$ are:

•
$$\mu_Y = 37.8$$

•
$$\sigma_Y = 55.1993$$

We use the following formula to calculate the Pearson correlation coefficient:

$$ho_{X,Y} = rac{\sum (x_i - \mu_X) \cdot (y_i - \mu_Y)}{n \cdot \sigma_X \cdot \sigma_Y}$$