HackerRank

Day 1: Standard Deviation

Objective

In this challenge, we practice calculating *standard deviation*. Check out the *Tutorial* tab for learning materials and an instructional video!

Task

Given an array, arr, of n integers, calculate and print the standard deviation. Your answer should be in decimal form, rounded to a scale of 1 decimal place (i.e., 12.3 format). An error margin of ± 0.1 will be tolerated for the standard deviation.

Example

$$arr = [2, 5, 2, 7, 4]$$

The sum of the array values is 20 and there are 5 elements. The mean is 4.0. Subtract the mean from each element, square each result, and take their sum.

$$(2-4)^2=4$$

$$(5-4)^2=1$$

$$(2-4)^2=4$$

$$(7-4)^2=9$$

$$(4-4)^2=0$$

Their sum is 18. Take the square root of $\frac{18}{5}$ to get 1.7, the standard deviation.

Function Description

Complete the stdDev function in the editor below.

stdDev has the following parameters:

- int arr[n]: an array of integers

Prints

- float: the standard deviation to 1 place after the decimal

Input Format

The first line contains an integer, n, denoting the size of arr.

The second line contains n space-separated integers that describe arr.

Constraints

- 5 < n < 100
- $0 < arr[i] \le 10^5$

Output Format

Print the standard deviation on a new line, rounded to a scale of 1 decimal place (i.e., 12.3 format).

Sample Input

```
STDIN Function
-----
5 arr[] size n = 5
10 40 30 50 20 arr =[10, 40, 30, 50, 20]
```

Sample Output

14.1

Explanation

First, find the mean:

$$\mu = \frac{\sum_{i=0}^{n-1} arr[i]}{n} = 30.0$$

Next, calculate the squared distance from the mean, $(arr[i] - \mu)^2$, for each arr[i] :

1.
$$(arr[0] - \mu)^2 = (10 - 30)^2 = 400$$

2.
$$(arr[1] - \mu)^2 = (40 - 30)^2 = 100$$

3.
$$(arr[2] - \mu)^2 = (30 - 30)^2 = 0$$

4.
$$(arr[3] - \mu)^2 = (50 - 30)^2 = 400$$

5.
$$(arr[4] - \mu)^2 = (20 - 30)^2 = 100$$

Now compute $\sum_{i=0}^{n-1} \left(arr[i] - \mu
ight)^2 = 400 + 100 + 0 + 400 + 100 = 1000$, so:

$$\sigma = \sqrt{rac{\sum_{i=0}^{n-1} \left(arr[i] - \mu
ight)^2}{n}} = \sqrt{rac{1000}{5}} = \sqrt{200} = 14.1421356$$