Day 0: Weighted Mean

Objective

In the previous challenge, we calculated a mean. In this challenge, we practice calculating a weighted mean. Check out the Tutorial tab for learning materials and an instructional video!

Task

Given an array, X, of N integers and an array, W, representing the respective weights of X 's elements, calculate and print the weighted mean of X 's elements. Your answer should be rounded to a scale of 1 decimal place (i.e., 12.3 format).

Example

$X=[1,2,3]$
$W=[5,6,7]$
The array of values $X[i] * W[i]=[5,12,21]$. Their sum is 38 . The sum of $W=18$. The weighted mean is $\frac{38}{18}=2.11111 \ldots$ Print 2.1 and return.

Function Description

Complete the weightedMean function in the editor below.
weightedMean has the following parameters:

- int X[N]: an array of values
- int W[N]: an array of weights

Prints

- float: the weighted mean to one decimal place

Input Format

The first line contains an integer, N, the number of elements in arrays X and W.
The second line contains N space-separated integers that descdribe the elements of array X.
The third line contains N space-separated integers that descdribe the elements of array W.

Constraints

- $5 \leq N \leq 50$
- $0<X[i] \leq 100$, where $X[i]$ is the $i^{\text {th }}$ element of array X.
- $0<W[i] \leq 100$, where $W[i]$ is the $i^{\text {th }}$ element of array W.

Output Format

Print the weighted mean on a new line. Your answer should be rounded to a scale of 1 decimal place (i.e., 12.3 format).

Sample Input

Sample Output

```
32.0
```


Explanation

We use the following formula to calculate the weighted mean:

$$
m_{w}=\frac{\sum_{i=0}^{N-1}\left(x_{i} \times w_{i}\right)}{\sum_{i=0}^{N-1} w_{i}} \Rightarrow m_{w}=\frac{10 \times 1+40 \times 2+30 \times 3+50 \times 4+20 \times 5}{1+2+3+4+5}=\frac{480}{15}=32.0
$$

And then print our result to a scale of 1 decimal place (32.0) on a new line.

